衰老涉及从稳态的逐步恶化。健康的成年大脑在监测和稳态状态下保持神经免疫性细胞,但老化的神经胶质细胞具有过度反应的表型。这些与年龄相关的促炎性偏见部分由细胞内在因素驱动,包括增加的细胞启动和促炎性细胞态。此外,老化的炎症环境是由环境改变的,例如放大的危险信号和细胞因子以及凝血症功能失调。这些细胞 - 建筑和环境因素共同提高了与年龄相关的神经免疫性激活和相关病理学的风险。在这篇综述中,我们通过“健康”衰老讨论细胞和分子神经免疫性的转移。这些与年龄相关的变化如何影响生理和行为;以及最近的研究如何揭示了神经免疫性途径和改善健康范围的靶标。
背景周围空间(同义词:Virchow-Robin空间)首次在150年前描述。它们被罚款,因为围绕小渗透的大脑容器的流体填充空间。,他们越来越多地兴起了科学兴趣,尤其是在提出所谓的淋巴系统及其在神经退行性和神经炎性疾病中的可能作用。方法PubMed用于系统搜索,并具有有关MRI成像和评估的文献效果。包括人类体内成像的研究包括涉及健康人口的研究。未设置时间范围。发光中的命名法是非常异构的,其术语诸如“大”,“ diala tod”,“扩大”的周围空间,而边界和定义通常尚不清楚。这项工作通常谈论周围空间。
脑积水是一种进行性神经系统疾病,与脑脊液 (CSF) 流动异常有关,导致脑室系统主动扩张。脑积水主要有三种类型,包括非交通性或阻塞性、交通性脑脊液吸收减少和交通性脑积水分泌过多。尽管常用分流手术对脑室扩大进行对症治疗,但患者仍然会出现症状,这表明脑积水的发病机制很复杂,提示该疾病不仅仅是循环过程的紊乱。本综述旨在介绍与先天性疾病相关的人类脑积水的遗传和分子方面,例如 X 连锁脑积水,这是与 L1-CAM 突变相关的最常见的遗传性脑积水形式,以及其他复杂病理,包括原发性纤毛运动障碍和 Dandy-Walker 畸形等常见综合征。重新评估脑积水研究中的现有假设,例如纤毛假说和淋巴流中断,并理解新数据,包括参与脑脊液产生的水通道水通道蛋白 1 (AQP1) 的下调以及神经源性缺陷与组织生物力学之间的相互联系,将为改善人类脑积水的诊断和治疗策略铺平道路。
星形胶质细胞在健康的认知功能和阿尔茨海默氏病(AD)中发挥作用。转录因子核因子-κB(NF-κB)驱动星形胶质细胞的多样性,但这些机制尚未完全了解。通过将人类大脑和动物模型的研究结合在一起,并有选择地操纵星形胶质细胞中的NF-κB功能,我们加深了对星形胶质细胞NF-κB在脑健康和AD中的作用的理解。在体积和细胞特异性转录组数据的计算机分析中揭示了AD中NF-κB和星形胶质细胞的关联。共聚焦研究验证了胶质原纤维酸性蛋白(GFAP) + -ASTROCYTES在AD与非AD受试者中的较高水平的P50 NF-κB和磷酸化的P65 NF-κB。在健康的小鼠脑中,星形细胞NF-κB的慢性激活扰乱了蛋白质组学的环境,导致线粒体相关蛋白的损失和炎症相关蛋白的兴起。持续的NF-κB信号传导还导致了小胶质的反应性,促炎性介体的产生以及与神经元中与衰老相关的蛋白质p16 Ink4a的堆积。然而,在AD小鼠模型中,NF-κB抑制加速了β-淀粉样蛋白和TAU的积累。分子生物学研究表明,星形胶质细胞NF-κB激活驱动GFAP和炎症蛋白的增加以及Aquaporin-4,这是一种有助于缓解AD的糖型系统蛋白。我们的调查发现了NF-κB实现大脑中星形胶质细胞的神经保护作用和神经毒性反应的基本机制。
在1960年代引入了啮齿动物中枢神经系统(CNS)中多巴胺(DA),去甲肾上腺素(Na)和5-羟色胺定位的组织化学法。它支持中枢神经系统中化学神经传递的存在。下脑茎中的单胺神经元向脑脑,依伯龙和单胺的降序系统形成了单突触的升序系统。单胺是在建议通过中枢神经系统中的突触化学传输来进行的。这种化学传播降低了电气传输的影响。在1969年和1970年代的指示中表明,中枢神经系统中的化学单胺通信的重要模式也通过突触外流体,细胞外流体以及涉及DA,Na和na和羟色胺等跨发司的流动和流动的大脑脑脊液中的长距离通信进行。在1986年,这种传播被Agnati和Fuxe及其同事命名为体积传输(VT),其特征在于发射机静脉曲张和受体不匹配。短距离和长距离VT途径的特征是体积分数,曲折和清除率。哺乳动物中枢神经系统中也存在电气传播,但化学传递处于主导地位。一种电气模式由缝隙连接形成的电突触表示,这些突触代表神经细胞之间的低耐药通道。与化学传播相比,它允许神经细胞之间的动作电位更快。第二种模式基于突触电流生成电场调节化学传输的能力。一个目的是了解如何与电气传输集成到化学传输以及星形胶质细胞中假定的(Aquaporin Water通道,多巴胺D2R和腺苷A2AR)配合物如何显着参与从Glymphatic System中清除废物的清除。vt也可能有助于完成针灸子午线对中药必不可少的操作,鉴于所指出的细胞外VT途径的存在。
摘要背景:在散发性阿尔茨海默病 (AD) 中,大脑淀粉样蛋白-β (Aβ) 沉积被认为是 Aβ 清除受损的结果,但这种关系在活体人类中尚未得到很好的证实。脑脊液清除是脑淋巴清除 (BGC) 的主要特征,已证明在 AD 小鼠模型中脑脊液清除异常。MRI 相位对比和鞘内注射对比剂研究报告称 AD 中的脑脊液流量减少。使用 PET 和 tau 示踪剂 18 F-THK5117,我们之前报告称 PET 示踪剂的心室脑脊液清除率在 AD 中降低并且与脑 Aβ 水平升高有关。方法:在本研究中,我们使用两种 PET 示踪剂,18 F-THK5351 和 11 C-PiB 来估算从 9 名正常对照和 15 名 AD 患者的早期动态 PET 帧计算出的脑脊液清除率。结果:我们观察到脑室脑脊液清除率测量值与 AD 的降低(r = 0.66,p < 0.01)相关(r = 0.66,p < 0.01)。我们还复制了脑室脑脊液清除率(18 F-THK5351)与脑 Aβ 负荷之间的显著关系(r = − 0.64,n = 24,p < 0.01)。通过增加样本量,我们扩展了观察范围,发现脑脊液清除率降低与皮质厚度和认知能力下降有关。结论:总体而言,研究结果支持以下假设:脑脊液清除失败是 AD 的一个特征,与 Aβ 沉积和 AD 病理有关。需要进行纵向研究以确定脑脊液清除失败是否是进行性淀粉样变性或其后果的预测因素。
Abstract: The brain endothelial cell (BEC) glycocalyx (ecGCx) is a BEC surface coating consisting of a complex interwoven polysaccharide (sweet husk) mesh-like network of membrane-bound proteoglycans, glycoproteins, and glycosaminoglycans (GAGs) covering the apical luminal layer of the brain endothelial cells.ECGCX可以被认为是由(1)ECGCX组成的三方血液屏障(BBB)的第一个障碍; (2)BEC; (3)周细胞周围室,细胞外基质和血管周围星形胶质细胞。这种障碍的扰动允许在后毛细血管中增加通透性,这将允许对两种流体,溶质和促进性周围性白细胞衍生的白细胞(PVS)(PVS)的渗透性,从而导致增大的神经蛋白和神经蛋白效果。已知ECGCX具有多个功能,其中包括其物理和电荷屏障,机械转导,血管通透性的调节,调节性反应的调节以及抗凝功能。本综述详细讨论了每个列出的功能,并利用了多个传输电子显微照片和插图,以更好地了解ECGCX结构和功能作用,因为它与扩大血管周空间(EPVS)有关。这是对五重奏系列的第五次综述,该系列从脑屏障细胞的角度讨论了EPV的重要性。衰减和/或ECGCX的损失会导致脑屏障破坏,并增加对炎后脉冲脉静脉关腔周围空间中积累的浮游性白细胞,流体和溶质的渗透性。这种积累会导致阻塞,并导致EPVS,而废物清除了最近公认的淋巴系统。重要的是,EPV越来越被视为脑血管和神经退行性病理学的标志。
重新填充CM严重疟疾主要由恶性疟原虫寄生虫引起[1]。其临床表现之一是CM,每年对人类的生活造成重大损失[2]。就像许多影响中枢神经系统(CNS)(见词汇表)的疾病一样,CM的特征是脑血管功能障碍。血管,神经元和常驻免疫细胞之间的动态,协调的相互作用对于大脑健康至关重要,并且有证据表明这些相互作用的失调是CM的原因[3]。通常,其神经病理学是由恶性疟原虫感染的红细胞(IRBC)的细胞辅助引起的,导致将现象定义为螯合[4]。然而,由于该领域的几项进展,在过去几年中,这种范式在过去几年中经历了重大措施。例如,单细胞基因组技术现在可以在功能上分离脑动脉,静脉和毛细血管[5]。内部显微镜已实时可视化寄生虫和免疫细胞活性[6-8]。淋巴系统的发现为了解如何被CNS抗原激活的免疫细胞奠定了基础[9]。,在疟疾流行国家,新的筛查,诊断和预后生物标志物以及出现的辅助治疗方案[10]中,磁共振成像(MRI)设施的可用性提高[10]使我们的理解,识别和治疗疾病可以向前迈进。我们在此类发展的背景下介绍了这篇综述,并强调了CM发病机理的新假设。
此手稿概述了渐进层中阿尔茨海默氏病(AD)病理生理的模型,从其起源到生物标志物的发展,然后再到症状表达。遗传易感性是导致线粒体功能障碍以及随后的淀粉样蛋白和Tau蛋白积累的主要因素,这些因素已被鉴定为AD的标志。扩大了这些积累的范围,我们探索了更广泛的病理生理方面,包括血脑屏障,血液流动,血管健康,血管健康,肠脑微生物二核,糖流动流动,代谢综合征,能量缺陷,能量缺陷,氧化应激,氧化应激,氧化压力,钙过载,炎症,炎症,神经元和脑损失,脑损失和脑力损失,脑部问题,脑电图,精神分裂,脑电图,精神损失,脑部问题,脑电图,脑电图,促进脑损失,脑电图。Photobiomeotulation(PBM)将近红外光使用便携式设备传递到选定的大脑区域,作为一种治疗方法。PBM有可能通过各种研究提供的数据来解决这些病理生理方面的各个方面。他们为大量小型发表的临床研究提供了机械支持,这些研究证明了记忆和认知的改善。他们通过大型随机对照研究来告知PBM治疗未决验证的潜力。脑网络的呈现和脑电图的波形变化(EEG)提供了使用这些数据作为应用各种PBM参数来改善结果的指南的机会。这些参数包括波长,功率密度,处理持续时间,LED定位和脉冲频率。在特定频率下脉冲会影响波形的表达和脑网络的修饰。表达源于在最近的研究中揭示的细胞和蛋白质结构的调节。这些发现提供了基于EEG的指南,用于使用人工智能通过EEG数据反馈来个性化AD治疗。
脑血流 (CBF) 和脑容量的缓慢振荡最近成为一个热门话题,因为这些缓慢振荡与脑内的脑脊液 (CSF) 运动有关,并可能促进血流过脑间质以清除溶质和有毒代谢物,这一过程称为淋巴流动 (1)。颅内 EEG、MRI 血氧水平依赖性 (BOLD) 信号和 CSF 波 (2) 的耦合缓慢同步振荡似乎共同在驱动 CSF 运动方面发挥着关键作用,尤其是在慢波 (delta 波) 睡眠活动期间。此外,这些类型的振荡发生在与颅内 B 波相同的频率范围内,而 B 波也是 CBF 和颅内压 (ICP) 规律同步波动的结果,其来源不明 (3)。这种关联促使我们分析了之前在 B 波期间进行的 MCA 速度和 ICP 的颅内记录中的其他频率参数和波形特征(3),并将它们与已发表的 MRI CBF 慢波测量结果(2、4-9)进行比较,以确定这些实体之间的相似性。颅内压 B 波最初被描述为以每分钟 0.5 到 2 个周期发生的规则重复 ICP 振荡,其来源已证明难以捉摸,其生理作用尚未确定。Lundberg 在他最初的经典论文中评论说,通过检查 B 波的特征及其与其他生理参数的关系,无法就其起源得出明确的结论(10)。一项关于麻醉猫软脑膜动脉的观察性研究描述了同步的 ICP 波和血管直径波动,其发生频率(每分钟 0.5-2 次)与经典 B 波相似,支持周期性血流和血容量波动可能是 ICP B 波原因的观点,但并未给出任何有关其生理功能的迹象(11)。一些早期关于患者和正常受试者的经颅多普勒 (TCD) 超声记录的报告描述了由于 CBF 变化导致的大脑中动脉 (MCA) 速度波动,其频率范围与 Lundberg B 波相同(12、13)。我们报告了 70% 的正常受试者在休息和躺在担架上 1 小时时,MCA 速度波动的频率范围 (0.5-2 次/分钟) 和形式与 Lundberg B 波相似,并且在同一报告中描述了头部受伤患者的同步 MCA 速度和 ICP 振荡,其频率与 B 波相同 (3)。其他研究人员证实了这些结果,并进一步描述了各种环境下 MCA 流速的节律性振荡,包括头部受伤患者、正常休息志愿者以及睡眠期间 (14-18)。一些研究指出,TCD 测得的 B 波发生的频率范围比 Lundberg 在 ICP 记录中指出的更宽,并且频率比我们小组最初描述的更宽(3),因此建议将 B 波频率范围扩大到每分钟 0.33-3 个周期(0.005-0.05 Hz)(18)。其他研究人员报告称,颅内 B 波的频率高达每分钟 4 个周期(0.067 Hz)(19)。最近发表的关于通过功能性(f)MRI 结合 EEG 测量慢周期性 CBF 振荡的描述