是研究数字,维度,内容和分泌细胞器的定位的最常用和通用的方法之一是共聚焦显微镜分析。然而,可以在细胞中引起的分泌细胞器的数量,大小和形状中存在相当大的异质性。因此,需要分析大量细胞器以进行有效量化。正确评估这些参数需要一种自动,无偏的方法来处理和定量分析显微镜数据。在这里,我们描述了由Cell -Profiler软件运行的两个管道,称为OrganleleProfiler和OrganeLlecontentProfiler。这些管道线用于内皮菌落形成细胞(ECFC)的共聚焦图像,其中包含独特的分泌细胞器,称为Weibel-Palade体(WPB),以及ECFC和ECFC和人类胚胎肾脏293T(HEK293T)细胞的早期内体。结果表明,管道可以量化细胞计数,大小,细胞器计数,细胞器的大小,形状,与细胞和细胞的关系,以及在内皮和HEK293T细胞中与这些物体的距离。此外,使用管道来测量高尔基体破裂后WPB大小的减小,并在ECFC中触发CAMP介导的信号通路后量化WPB的核周聚类。此外,管道能够量化位于细胞器或细胞质中的二级信号,例如小的WPB GTPase RAB27A。使用斐济检查了细胞剖面测量值的有效性。确定,这些管道为多个细胞和细胞器类型的特性提供了强大的,高处理的定量工具。这些管道是免费的,可以在不同的细胞类型或细胞器上易于使用,并且易于编辑。
●什么是生活?生物多样性;需要分类;生命的三个领域;分类学和系统学;物种和分类层次结构的概念;二项式术语;研究分类法的工具 - 博物馆,动物园,草药,植物园。●五个王国分类:Monera的显着特征和分类; protista和真菌分为主要群体;地衣;病毒和病毒,将植物的显着特征和分类为主要群体,苔藓植物,孢子菌,裸子植物和被子植物;被子植物 - 分类为类,特征特征和示例,显着特征和动物 - 非对抗的分类,直至门水平,然后缔结级别。●动物和植物中的结构组织:形态和修饰;组织;解剖学和流动植物的不同部分的功能:根,茎,叶,渗透性 - cymose和camose和comemose,豆类,水果和种子,动物组织;昆虫(蟑螂)的不同系统(消化,循环,呼吸,神经和生殖)的形态,解剖学和功能。●细胞结构和功能:细胞理论和细胞作为生命的基本单位;原核和真核细胞的结构;植物细胞和动物细胞;细胞包膜,细胞膜,细胞壁;细胞细胞器结构和功能;内膜系统 - 肾上腺素网,高尔基体,溶酶体,液泡;线粒体,核糖体,质体,微生物;细胞骨架,纤毛,叶叶菌,中心元素(超微结构和功能);核核膜,染色质,核仁。●细胞分裂:细胞周期,有丝分裂,减数分裂及其意义。活细胞的化学成分:蛋白质,碳水化合物,脂质,核酸的生物分子结构和功能;酶类型,性质,酶作用。
作为溶质载体 6 (SLC6) 蛋白家族的第一位成员,γ -氨基丁酸 (GABA) 转运蛋白 1 (GAT1, SLC6A1 ) 在 GABA 从突触间隙进入神经元和星形胶质细胞的过程中起着关键作用。此过程有助于 GABA 随后储存在突触前小泡中。人类 SLC6A1 基因极易发生错义突变,导致患者出现癫痫等严重临床后果。SLC6A1 相关疾病的分子机制已被某种程度上辨别;现在已知许多 SLC6A1 突变会损害蛋白质折叠,从而无法到达质膜。本质上,一旦进入内质网 (ER),GAT1 就会遵循一系列复杂的级联事件,从而实现有效的细胞内运输。这涉及与专门的分子伴侣结合,这些分子伴侣负责控制蛋白质折叠过程、寡聚化、通过高尔基体进行分类,并最终递送到细胞表面。整个过程在多个检查点受到严格的质量控制机制的约束。虽然大多数现有的功能丧失的 SLC6A1 变体会干扰折叠和膜靶向,但某些突变体仍保留了大量的表面表达。在这两种情况下,抑制 GAT1 活性都会破坏 GABAergic 神经传递,先于携带这些突变的个体出现疾病表现。神经系统令人着迷,需要系统的、开创性的研究努力来剖析与复杂神经系统疾病发作相关的精确分子因素,并发现更多非典型治疗靶点。最近的研究为一些错误折叠的 SLC6A1 变体带来了希望,这些变体可以通过小分子(即化学和药理学伴侣)来挽救,这些小分子作用于分泌途径中的多个上游靶点。我们在此强调药物伴侣作为治疗 SLC6A1 相关疾病的治疗策略的重要性。
01。农业生物技术单元1:细胞结构和功能原核和真核细胞结构,细胞壁,质膜,细胞细胞器的结构和功能:液泡,线粒体,质体,高尔基体,Golgi Appratus,er,Er,er,过氧化物症。细胞分裂,细胞周期的调节,蛋白质分泌和靶向,细胞分裂,生长和分化。 单元2:碳水化合物,脂质,蛋白质和核酸的生物分子和代谢结构以及功能,碳水化合物的合成,糖酵解,HMP,柠檬酸周期和代谢调节,氧化磷酸化和氧化磷酸化和底物水平磷酸化磷酸化,植物磷酸化,植物,植物,植物,植物,Hormones,Hormones。 功能分子,抗氧化剂,营养前体,HSP,抗病毒化合物。 单元3:酶学酶,结构构象,分类,测定,分离,纯化和表征,催化特异性,作用机制,活性位点,调节酶活性。 Unit 4: Molecular Genetics Concept of gene, Prokaryotes as genetic system, Prokaryotic and eukaryotic chromosomes, methods of gene isolation and identification, Split genes, overlapping genes and pseudo genes, Organization of prokaryotic and eukaryotic genes and genomes including operan, exon, intron, enhancer promoter sequences and other regulatory elements. 突变自发,诱导和位置,在细菌,真菌和病毒中重组,转化,转导,结合,转座元素和转座。 翻译机制及其控制,翻译后修改。细胞分裂,细胞周期的调节,蛋白质分泌和靶向,细胞分裂,生长和分化。单元2:碳水化合物,脂质,蛋白质和核酸的生物分子和代谢结构以及功能,碳水化合物的合成,糖酵解,HMP,柠檬酸周期和代谢调节,氧化磷酸化和氧化磷酸化和底物水平磷酸化磷酸化,植物磷酸化,植物,植物,植物,植物,Hormones,Hormones。功能分子,抗氧化剂,营养前体,HSP,抗病毒化合物。单元3:酶学酶,结构构象,分类,测定,分离,纯化和表征,催化特异性,作用机制,活性位点,调节酶活性。Unit 4: Molecular Genetics Concept of gene, Prokaryotes as genetic system, Prokaryotic and eukaryotic chromosomes, methods of gene isolation and identification, Split genes, overlapping genes and pseudo genes, Organization of prokaryotic and eukaryotic genes and genomes including operan, exon, intron, enhancer promoter sequences and other regulatory elements.突变自发,诱导和位置,在细菌,真菌和病毒中重组,转化,转导,结合,转座元素和转座。翻译机制及其控制,翻译后修改。单元5:遗传信息的基因表达,操纵子概念,原核生物和真核生物转录的转录机制,转录单位,调节序列,增强序列和增强剂,激活因子,激活因子,共激活因子,共激活因子,共抑制剂,原核生物和真核生物的转化因子和促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进因遗传密码。
摘要B-千奇蛋白具有重要的生态和生理作用以及广泛应用的潜力,但是很少有来自B-奇异生产剂的差异相关酶的表征。针对Tara Oceans基因地图集的查询,在芽孢杆菌元转录组中发现了来自12个PFAM接收器的4,939个与丁氏蛋白相关的独特序列。假定的几丁质合酶(CHS)序列在甲壳类(39%),斯特雷默刺激(16%)和昆虫(14%)中降低,来自Tara Oceans Unigenes Unigenes Unigenes Unigenes Unigenes版本1 Metatranscrentsomes(Matouv1 1 T)数据库的昆虫(14%)。从模型diatom thalassiosira pseudonana(thaps3_j4413,指定为tp chs1)中的CHS基因被鉴定。海洋微生物真核生物转录组测序项目(MMETSP),Phycocosm和Plaza Diotom Omics数据集的TP CHS1的同源分析表明,Mediophyceae和thalassionemales物种是潜在的B -Chitin生产国。tp chs1在酿酒酵母和三角肌中过表达。在转基因P. tricornutum系中,TPCHS1- EGFP定位于高尔基体和质膜,并且在细胞分裂期间的裂解沟中主要可获得。增强的TP CHS1表达可以诱导异常的细胞形态并降低三角杆菌的生长速率,这可能归因于G2/M期的抑制。S.酿酒酵母被证明是表达大量活性TPCHS1的更好系统,在放射测定中,在放射测定中有效地不合适的UDP-N-乙酰葡萄糖胺。我们的研究扩大了有关海洋真核微生物中几丁质合酶分类分布的知识,并且是第一个集体表征活性海洋硅藻CHS的知识,该硅藻可能在细胞分裂过程中起重要作用。
冠状病毒包膜(E)蛋白是一种小的结构蛋白,具有离子通道活性,在病毒组装,萌芽,免疫发病和疾病严重程度中起重要作用。病毒蛋白E也位于感染细胞的高尔基体和ER膜中,与炎性体激活和免疫失调有关。在这里,我们评估了Bit225的体外抗病毒活性,作用机理和体内功效,用于治疗SARS-COV-2感染。BIT225在CALU3和VERO细胞中对SARS-COV-2和VERO细胞中的宽光谱直接作用抗病毒活性在6种不同的病毒菌株中具有相似的效力。位225抑制E蛋白的离子通道活性,但未抑制内源性术语或钙诱导的TMEM16A在Xenopus卵母细胞中的离子通道活性。位225在感染前12小时从口腔烤12天服用12天,完全预测SARS-COV-2感染的K18小鼠的体重减轻和死亡率(100%存活,n = 12),而所有车辆剂量的动物在两项研究中以第9天(n = 12)到达了死亡率终点(n = 12)。当感染后24小时开始治疗时,还可以预防体重减轻和死亡率(100%存活,n = 5),而在感染后48小时开始治疗开始时,有5只小鼠中的4只小鼠体重增加并增加了。治疗功效取决于位225剂量,并且与肺病毒载量(3.5 log 10),病毒滴度(4000 PFU/mL)以及肺和血清细胞因子水平的显着减少有关。这些结果将Viroporin E验证为可行的抗病毒靶标,并支持Bit225的临床研究,以治疗SARS-COV-2感染。
课程计划 - 化学和生活。原子,分子和键。<分为分子间力。极性。生物学兴趣的主要化合物:水,氨基酸,碳水化合物,脂质和蛋白质。结构和功能原理。- 单元格。突发性和真核细胞,质膜的特性和功能,渗透,主动转运,被动运输,质子泵,胞吞作用和内吞作用。核心,细胞骨架(微管,微丝,中间细丝),Centrioli,睫毛,鞭毛。<动物细胞和植物细胞之间的DIVA比较。植物细胞:细胞壁;细胞壁的成分;细胞壁的层,细胞壁的生长; plasmodesmi。质体:先知;白细胞。 ezioplasti;染色体;叶绿体。液泡。- 细胞的能量交换。热力学和动力学的基本原理。ATP结构和功能。 线粒体和叶绿体的作用。 发酵。 有氧方法:克雷布斯循环,电子传输链。 植物细胞:光合作用:发光阶段,色素,光系统的作用;黑暗阶段。 光官。 C4光合作用和CAM光合作用。 - 细胞及其繁殖。 核酸的聚合物结构。 rebiosomes。ATP结构和功能。线粒体和叶绿体的作用。发酵。 有氧方法:克雷布斯循环,电子传输链。 植物细胞:光合作用:发光阶段,色素,光系统的作用;黑暗阶段。 光官。 C4光合作用和CAM光合作用。 - 细胞及其繁殖。 核酸的聚合物结构。 rebiosomes。发酵。有氧方法:克雷布斯循环,电子传输链。植物细胞:光合作用:发光阶段,色素,光系统的作用;黑暗阶段。光官。C4光合作用和CAM光合作用。- 细胞及其繁殖。核酸的聚合物结构。rebiosomes。各种形式的DNA。染色体中的DNA组织。遗传物质的复制。ARN的转录和成熟。<遗传密码的女主角。遗传信息翻译系统的结构。多肽链的生物合成:开始,延长和终止。蛋白质的转染后修饰。在分类蛋白质中,内质网和高尔基体复合物。细胞周期及其相。la Meiosi。 减数分裂的生物学含义。 - 遗传学注释。 基因型和表型。 <门德尔的遗传和原则。 国王。 不完全的主导和代码。 不同基因之间的相互作用。 多局部。 多帕拉·阿里亚。 遗传技术注释:CRISPR-CAS9。 - 活生物体。 二项式系统;物种;其他分类群体;主要的生物群。 le植物:briofite,pteridofite,gimnosperme和Angiosperme。 植物中的性周期。 植物的织物。 组织学:茎,根,叶,花,果实。 植物的代谢产物。 蔬菜激素。 药物和活性成分。 推荐的文本和教学材料 - 所罗门,马丁,马丁,伯格“生物学”,VII ed。 书面考试和口试评估方法。la Meiosi。减数分裂的生物学含义。- 遗传学注释。基因型和表型。<门德尔的遗传和原则。国王。不完全的主导和代码。不同基因之间的相互作用。多局部。多帕拉·阿里亚。遗传技术注释:CRISPR-CAS9。- 活生物体。二项式系统;物种;其他分类群体;主要的生物群。le植物:briofite,pteridofite,gimnosperme和Angiosperme。植物中的性周期。植物的织物。组织学:茎,根,叶,花,果实。植物的代谢产物。蔬菜激素。药物和活性成分。推荐的文本和教学材料 - 所罗门,马丁,马丁,伯格“生物学”,VII ed。书面考试和口试评估方法。根据该计划进行了编写的任何其他大学级文本 - 网站教师教学方法/组织教学讲座,PowerPoint演示和课堂讨论的课程和幻灯片的注释。 最终投票以30年代表示:编写的任何其他大学级文本 - 网站教师教学方法/组织教学讲座,PowerPoint演示和课堂讨论的课程和幻灯片的注释。最终投票以30年代表示:
目的:由于纳米载体的缺点,无载体纳米递送系统的开发在癌症治疗中受到越来越多的关注,但目前对无载体纳米系统能同时实现监测功能的研究较少。本文建立了一种负载姜黄素和盐酸伊立替康的多功能无载体纳米系统,用于胃癌的治疗和监测。方法:本研究制备了前期的盐酸伊立替康-姜黄素纳米系统(该体系命名为SICN)。基于姜黄素的荧光,利用流式细胞术、激光共聚焦显微镜和斑马鱼荧光成像技术研究了SICN在体内和体外的监测功能。此外,还利用HGC-27人胃癌细胞研究了SICN的细胞毒性。结果:流式细胞术和斑马鱼荧光成像监测结果显示,SICN的摄取率明显高于游离姜黄素,排泄率较低。 SICN在细胞和斑马鱼中具有更高的蓄积和滞留。激光共聚焦显微镜监测结果显示,SICN通过巨胞饮、caveolin、网格蛋白介导和非网格蛋白依赖的内吞等多种途径内化进入HGC-27细胞,并在细胞内分布于整个胞浆,包括溶酶体和高尔基体。体外细胞实验表明,SICN纳米粒子比单一组分毒性更大,微酸性条件下HGC-27细胞对纳米粒子的吸收更多,毒性更大。结论:SICN是一种很有前途的无载体纳米粒子,两种单组分联合治疗可发挥协同抗肿瘤作用。当暴露于肿瘤酸性环境中,SICN由于电荷转换而表现出更强的细胞毒性。更重要的是,纳米粒子的自我监测功能得到了发展,为肿瘤的联合治疗开辟了新的思路。关键词:无载体,盐酸伊立替康,姜黄素,多功能纳米粒子
摘要:目的:比较多纳非尼与仑伐替尼治疗中晚期肝细胞癌(HCC)患者的疗效。方法:回顾性分析2021年1月至2022年6月河池市第一人民医院、河池市人民医院、广西科技大学第二附属医院等中心接受多纳非尼或仑伐替尼治疗的100例中晚期HCC患者。患者根据治疗方法分为多纳非尼组(n=50)和仑伐替尼组(n=50)。比较两组患者的疗效、不良反应以及治疗前后甲胎蛋白(AFP)、高尔基体糖蛋白73(GP-73)、磷脂酰肌醇蛋白聚糖-3(GPC3)的变化。结果:仑伐替尼组客观缓解率小于多纳非尼组(20% VS 32%,P > 0.05),多纳非尼组疾病控制率高于仑伐替尼组(70% VS 50%,P < 0.05)。两组生存时间比较,多纳非尼组生存率、无进展生存期均高于仑伐替尼组(P < 0.05),影响生存率的主要危险因素为多发肿瘤数目。两组不良反应发生率比较,差异无统计学意义(P > 0.05)。两组治疗后AFP、GP-73、GPC3水平均较治疗前明显降低(P < 0.05)。结论:多纳非尼与仑伐替尼均能有效治疗中晚期肝癌患者,且多纳非尼局部控制率高于仑伐替尼;多纳非尼治疗中晚期肝癌患者的临床疗效优于仑伐替尼,可有效降低患者病情严重程度,延长患者生存时间。
维托里奥·罗斯蒂博士简历 维托里奥·罗斯蒂,医学博士 出生:1962 年 7 月 5 日 国籍:意大利 现任职位:帕维亚 IRCCS Policlinico San Matteo 基金会第一阶段临床试验部和实验治疗医学主任 工作地址:意大利帕维亚 IRCCS Policlinico San Matteo 基金会,v.le Golgi 19 电话:+39 0382 502070 电子邮件:v.rosti@smatteo.pv.it 教育经历 1988 年:以优异成绩毕业于帕维亚大学医学院。 1993 年:主修帕维亚大学内科医学。 1998 年:帕维亚大学血液学专业 培训和工作活动 1986-1994 年:帕维亚 IRCCS Policlinico San Matteo Foundation 内科系住院医师。 1995-1997 年:美国纽约州纽约市纪念斯隆凯特琳癌症中心人类遗传学系研究员。 1999-2009:帕维亚 IRCCS Policlinico San Matteo Foundation 移植研究领域医师 2010-2021:帕维亚 IRCCS Policlinico San Matteo Foundation 生物化学、生物技术和晚期疾病实验室医师 2021 年至今:帕维亚 IRCCS Policlinico San Matteo Foundation 系统性淀粉样变性和高复杂性疾病中心全科医学-2 医师 2018 年至今:帕维亚 IRCCS Policlinico San Matteo Foundation I 期临床试验部门和实验治疗医学主任。 研究和科学活动 在他的职业生涯中,Rosti 博士既从事临床活动,也从事实验研究。后者主要研究造血生长因子对造血祖细胞体外生长和分化的影响。在纪念斯隆凯特琳癌症中心工作期间,Rosti 博士的主要研究兴趣是通过小鼠 ES 细胞中的同源重组来灭活基因,以及生成小鼠血液病模型。自 2012 年 10 月 1 日起,他成为 IRCCS 生物技术研究实验室(现为生物化学、生物技术和高级诊断实验室)骨髓纤维化研究和治疗中心的负责人