1 凯斯西储大学生物医学工程系,俄亥俄州克利夫兰 44106,2 斯坦福大学神经外科系,加利福尼亚州斯坦福 94035,3 斯坦福大学电气工程系,加利福尼亚州斯坦福 94035,4 VA 医学中心路易斯斯托克斯克利夫兰系,俄亥俄州克利夫兰 44106,5 布朗大学神经科学系,罗德岛州普罗维登斯 02912,6 布朗大学罗伯特 J. 和南希 D. 卡尼脑科学研究所,罗德岛州普罗维登斯 02912,7 VA RR&D 神经修复和神经技术中心,罗德岛州普罗维登斯 02912,8 克利夫兰大学医院医学中心神经外科系,俄亥俄州克利夫兰 44106,9 凯斯西储医学院神经外科系,俄亥俄州克利夫兰 44106,10克利夫兰大学医院医学中心神经内科,俄亥俄州克利夫兰 44106,11 布朗大学工程学院,罗德岛州普罗维登斯 02912,12 麻省总医院神经内科神经技术和神经康复中心,马萨诸塞州波士顿 02114,13 哈佛医学院神经内科,马萨诸塞州波士顿 02114,14 斯坦福大学生物工程系,加利福尼亚州斯坦福 94035,15 斯坦福大学神经生物学系,加利福尼亚州斯坦福 94035,16 斯坦福大学霍华德休斯医学研究所,加利福尼亚州斯坦福 94035,17 斯坦福大学吴仔神经科学研究所,加利福尼亚州斯坦福 94035,以及 18 斯坦福大学 Bio-X 项目,加利福尼亚州斯坦福 94035
自人工智能 (AI) 和机器学习 (ML) 出现以来,研究人员一直在研究智能计算系统如何与用户及其周围环境交互和联系,从而引发了有关偏见的人工智能系统、ML 黑盒、用户信任、用户对系统的控制感知以及系统透明度等问题的争论。所有这些问题都与人类如何通过使用不同交互模式的界面与人工智能或机器学习系统交互有关。先前的研究从各种角度解决了这些问题,从通过伦理和科学技术研究 (STS) 视角理解和构建问题,到为问题找到有效的技术解决方案。但几乎所有这些努力都有一个共同的假设:如果系统能够解释其预测的方式和原因,人们就会有更好的控制感知,因此会更加信任这样的系统,甚至可以纠正它们的缺点。这个研究领域被称为可解释人工智能 (XAI)。在这个工作室中,我们总结了该领域先前的努力;然而,我们专注于使用有形和具身交互 (TEI) 作为理解 ML 的交互方式。我们注意到,物理形式及其行为的可用性不仅可以为 ML 系统的可解释性做出贡献,还可以为批评创造一个开放的环境。这个工作室旨在批评可解释的 ML 术语,并描绘 TEI 可以为 HCI 提供的机会,以设计更可持续、更易掌握和更公正的智能系统。
使用软木虫切开同一直径的马铃薯圆柱体。修剪圆柱体,使它们的长度相同。准确测量并记录每个马铃薯缸的长度和质量。测量0.5 m盐溶液的10 cm 3,并放入第一个沸腾管中。将沸腾管标记为:0.5 m盐。测量0.25 m盐溶液中的10 cm 3,然后放入第二个沸腾管中。将沸腾管标记为:0.25 m盐。测量蒸馏水的10厘米3,并放入第三管。将沸腾管标记为水。将一个马铃薯缸在每个沸腾管中加入。确保您知道每个沸腾管中每个土豆缸的长度和质量。将马铃薯气缸放在沸腾管中一个小时/在试管架上过夜。从沸腾管中取下圆柱体,然后用纸巾小心地将它们擦干。重新测量每个圆柱体的长度和质量。公平测试:盐溶液相同的盐溶液/盐溶液中的盐缸的长度和直径/溶液中的时间长度
伸手和抓握是每个人生活中必不可少的一部分,它使人能够与环境进行有意义的互动,是独立生活方式的关键。最近基于脑电图 (EEG) 的研究已经表明,可以在 EEG 中识别自然伸手和抓握动作的神经关联。然而,这些在实验室环境中获得的结果是否可以过渡到适用于家庭使用的移动 EEG 系统仍是一个问题。在当前的研究中,我们调查了是否可以使用移动 EEG 系统(即基于水的 EEG-Versatile TM 系统和干电极 EEG-Hero TM 耳机)成功识别和解码基于 EEG 的自然伸手和抓握动作的关联。此外,我们还分析了在实验室环境中获得的基于凝胶的记录(g.USBamp/g.Ladybird,黄金标准),这些记录遵循相同的实验参数。对于每个记录系统,15 名研究参与者执行了 80 次自发伸手抓取玻璃杯(手掌抓取)和勺子(侧抓取)的动作。我们的结果证实,使用这些移动系统可以成功识别基于 EEG 的伸手抓取动作的相关性。在结合运动条件和休息的单次试验多类解码方法中,我们可以证明低频时域 (LFTD) 相关性也是可解码的。根据未见测试数据计算的总平均峰值准确度,水基电极系统为 62.3%(9.2% STD),而干电极耳机达到 56.4%(8% STD)。对于凝胶基电极系统,可以达到 61.3%(8.6% STD)。为了促进和推动基于 EEG 的运动解码领域的进一步研究,以及让感兴趣的社区得出自己的结论,我们提供了 BNCI Horizon 2020 数据库 (http://bnci-horizon-2020.eu/database/data-sets) 中公开的所有数据集。
抽象目的:使用脑部计算机界面(BCI)控制的神经假体来证明自然主义运动控制速度,协调的掌握和从训练到新物体的延长。设计:与前臂功能电刺激(FES)集成的心脏内BCI的I期试验。报告的数据跨越了植入后的第137天至1478年。设置:三级护理门诊康复中心。参与者:一名27岁的C5级A类(在美国脊柱损伤协会损伤量表上)创伤性脊髓损伤干预措施:在其左侧(主要)运动皮层中植入阵列后,接受了BCI-FES训练的参与者,以控制动态,辅助的,具有辅助的固定的固定的固定固定的固定固定剂,Wrist,Wrist和手动运动。主要结果措施:对ARM运动能力的标准化测试(对强度,敏感性和预性评估评估评估[GRASSP],行动研究ARM测试[ARAT],GRASP和释放测试[GRT],Box and Block测试),Grip肌度测试和功能活性测量的功能[CUE-TIPLIPE-STROTIA QUIFIA],QUADIA QUADIA QUADIA QUADIA QUADIA,有或没有BCI-FES的脊髓独立测量自我报告[SCIM-SR])。结果:随着BCI-FES的分数,分数从基线上提高了:握力(2.9 kg); Arat杯子,气缸,球,酒吧和块; grt罐,分叉,钉,重量和胶带;草p强度和预性(从瓶中倒出的盖子,转移钉子);以及提示曲手和手工技能。QIF-SFAND SICIM-SR饮食,美容和厕所活动有望改善BCI-FES的家庭使用。Pincer抓地力和移动性不受影响。BCI-FES抓地力技能使参与者能够玩改编的“战舰”游戏并操纵家庭对象。结论:使用BCI-FES,参与者执行了熟练和协调的抓手,并在上肢功能的测试中取得了显着的临床收益。练习从培训对象到家庭用品和休闲活动的练习。Palmar,横向和
摘要 - 6D姿势估计方法的研究对于增强机器人感知和操纵能力至关重要,尤其是在复杂的环境中。最初,我们在凉亭仿真环境中采用了深对象姿势估计(DOPE)项目来识别和掌握对象。但是,在高度混乱或遮挡的场景中,涂料表现出差的性能。为了应对这些挑战,我们转向了一种更强大的方法,并彻底检查了其基本的纸张和代码。计算资源和时间的限制,我们专注于一个对象,并调整了参数以加快培训和评估过程。我们成功地训练了密集型模型,进行了评估,并可视化了结果。我们将修改模型的性能与官方密集型模型进行了比较,观察到,尽管我们的调整提高了速度和可行性,但官方模型在评估和可视化任务方面的准确性和鲁棒性方面的表现优于我们的表现。此比较强调了在实际应用中模型优化与性能之间的权衡。