电导调节剂(CFTR)(Moran,2017)和细胞内钙离子(Ca 2+)激活Anoctamin-1(Ano-1,TMEM16A)(Caputo等,2008)。当前的研究重点是通过增加细胞外质子(H +)浓度激活的Cl-通道。所谓的质子激活外部整流阴离子通道(PAORAC)或酸敏感的外部整流(ASOR)通道在细胞外酸性后介导Cl - 伏布(Lambert and Oberwinkler,Wang等,2007; Wang et al。,2007; Ma等)。tmem206是Paorac/ASOR的分子成分,在2019年已被两个独立研究小组鉴定出来(Ullrich等,2019; Yang等,2019)。此外,最近已经解决了TMEM206的结构:TMEM206形成一个同型通道,每个单体具有两个跨膜跨度的螺旋(Ruan等,2020; Deng等,2021)。根据人类蛋白质地图集,TMEM206显示出几乎普遍存在的mRNA表达,在大脑,肾脏和淋巴组织中最突出的表达(人类蛋白质Atlas,2023)。尚未完全理解其生物学功能。在亚细胞水平上,据报道TMEM206的Cl-电导率可预防内体高酸性(Osei-Owusu等,2021)。此外,已经发现TMEM206有助于大肺炎的收缩,这是一种在免疫和癌细胞中特别重要的内体类型的内体。TMEM206的破坏可降低大细胞体的分辨率,并增加癌细胞的白蛋白依赖性生存率(Zeziulia等,2022)。Wang等。Wang等。除了在囊泡中的丰度外,TMEM206还定位于质膜。在质膜中,据报道TMEM206有助于小鼠,Hela和Hek293细胞的培养神经元细胞中酸诱导的细胞死亡(Wang等,2007; Sato-Numata等,2014; Ullrich等,2019)。 提出TMEM206在诸如缺血性中风和癌症之类的病理中起作用,pH可能会降至6.5以下(Xiong等,2004; Kato等,2013; Thews和Riemann,2019)。 尽管在室温下激活阈值低于pH 5.5,但在37°C时,其转移到〜ph 6.0(Sato-Numata等,2013),因此TMEM206可能在病理生理条件下被激活。 人体内的某些隔室还显示接近TMEM206激活阈值的pH值。 在结肠中,pH值范围从盲肠中的pH值5.7在直肠中缓慢增加到6.7(Fallingborg,1999),因此TMEM206也可能在一般的结肠上皮和结直肠癌中发挥作用,pH值得低于生理条件。 因此,我们想知道TMEM206是否在人类结直肠癌细胞中表达,以及它是否有助于酸诱导的细胞死亡。 为了更好地了解TMEM206对细胞功能的贡献,需要药理学工具。 对通道的药理抑制避免了敲除或敲除的补偿机制。 此外,菲洛莱汀(Wang等,2007)和硫酸妊娠(PS)(Drews等,2014)被报道为PAORAC/ASOR/TMEM206抑制剂,但是,菲律宾是>在质膜中,据报道TMEM206有助于小鼠,Hela和Hek293细胞的培养神经元细胞中酸诱导的细胞死亡(Wang等,2007; Sato-Numata等,2014; Ullrich等,2019)。提出TMEM206在诸如缺血性中风和癌症之类的病理中起作用,pH可能会降至6.5以下(Xiong等,2004; Kato等,2013; Thews和Riemann,2019)。尽管在室温下激活阈值低于pH 5.5,但在37°C时,其转移到〜ph 6.0(Sato-Numata等,2013),因此TMEM206可能在病理生理条件下被激活。人体内的某些隔室还显示接近TMEM206激活阈值的pH值。在结肠中,pH值范围从盲肠中的pH值5.7在直肠中缓慢增加到6.7(Fallingborg,1999),因此TMEM206也可能在一般的结肠上皮和结直肠癌中发挥作用,pH值得低于生理条件。因此,我们想知道TMEM206是否在人类结直肠癌细胞中表达,以及它是否有助于酸诱导的细胞死亡。为了更好地了解TMEM206对细胞功能的贡献,需要药理学工具。对通道的药理抑制避免了敲除或敲除的补偿机制。此外,菲洛莱汀(Wang等,2007)和硫酸妊娠(PS)(Drews等,2014)被报道为PAORAC/ASOR/TMEM206抑制剂,但是,菲律宾是tmem206受到常见的Cl-通道抑制剂DID(4,4' - 二硫代硫代氨基-2,2,2'-省二硫酸)的抑制作用对于TMEM206(Liantonio等,2007; Guinamard等,2013)。
pannexin1(panx1)是一种糖蛋白,在整个脊椎动物组织中无处不在。在细胞膜中,它形成非选择性半通道(Panx1 HC),允许释放ATP。这种细胞外ATP触发与病原体(包括病毒)免疫反应有关的嘌呤能信号。虽然已知Panx1 HC的活性被某些病毒升高,但潜在的分子机制仍然难以捉摸。方法:在这项研究中,我们使用了poly(i:c),这是一种构成病毒感染标志的双链RNA类似物。腹膜巨噬细胞是从野生型和panx1敲除小鼠那里获得的。通过RT-QPCR定量促炎细胞因子的mRNA水平。我们还通过染料摄取测定评估了半通道活性,而使用Fura-2和GCAMP6研究了Ca 2+信号。PANX1-P2X 7 R相互作用通过接近连接测定研究。结果:PANX1表达和活性对于RAW264.7细胞和腹膜巨噬细胞中Poly(I:C)诱导的促炎反应至关重要。在用MPANX1(HELA-MPANX1)和RAW264.7细胞转染的HeLa细胞中,Poly(I:C)以浓度依赖性方式增加了PANX1 HC活性,这受到10 Panx1的抑制,这是一种选择性地阻止PANX1 HC的肽。此外,poly(i:c)诱导的PANX1 HC活性的上升与细胞内Ca 2+信号的迅速增加相关,这取决于TLR3和P2X 7 R活性。有趣的是,持续暴露于poly(i:c)促进了panx1-p2x 7 r复合物的相互作用和内在化,取决于CAMKII,PANX1 HC和P2X 7 R活性。通过使用BAPTA-AM,使用KN-62的CAMKII阻塞或使用DB-CAMP激活PLY(I:C)诱导的PANX1 HC活性的增加完全阻止了Ca 2+螯合。这些发现与来自Panx1突变体的数据一致,这些数据避免或模仿激酶靶位点的磷酸化。支持这一发现,我们证明了CAMKII活性对于巨噬细胞中聚(I:C)触发的炎症反应至关重要。结论:TLR3/CA 2+/CAMKII/PANX1 HC途径对于策划对病毒模式的细胞反应至关重要,并提出了预防感染和减轻与基于RNA的基于RNA的病毒感染的有害作用的潜在新型目标。
最近,我们描述了一个调节系统,该系统允许在较高的真核细胞系(1),植物(2)和动物(3,4)中严格控制单个基因活性。该系统的基本组件是(i)一个RNA聚合酶H最小启动子,放置在多个操作序列(TETO)的下游,其大肠杆菌tnjo Tetracycline抗性操纵子和(ii)TET抑制剂(TET)(TETR)和Simples Simples Simplex Virus Protein 16(vpp16(vp p p p)(ii)(ii)(ii)融合。在不存在四环素(TC)的情况下,TTA与TET算子结合以激活最小启动子的转录,而在TC存在下,它的关联并因此阻止了其转录激活。在TTA结合后,源自巨细胞病毒IE启动子(PHCMV,5)的最小启动子,并融合到七个TETO序列中,当在短暂性表达测定中进行比较时,在HELA细胞中的父启动子的明显强度达到了显着的强度(6)。TTA的高激活潜力及其结合位点在PHCMV*_1 [(1)中的排列;参见图ia]建议设计双向启动子,该设计将允许同时调节来自中心位置多个TETO序列的两个转录单元(图la)。这样的启动子对于多种实验方法应该有用。首先,它可以允许以化学计量量的两种基因产物的合成,这通常是产生异二聚体(或异源 - 寡聚)蛋白的先决条件。在这里,我们报告了双向启动子的构建(PBI-L;图第二,通过将不同效率的最小启动子融合到中心位置的TETO序列,可以在不同但定义的水平上共同调节两个基因产物。第三,通过在双向启动子的一侧整合适当的报告基因,可以通过报告基因函数来监测对不可读基因的调节。后一种可能性也可能有助于在细胞和有机水平上 - 筛选正确整合的表达单元,以控制感兴趣的基因。1a)表明,该启动子以定量方式共同调节了编码P-半乳糖苷酶和荧光素酶的两个报告基因。此外,我们描述了一个矢量系列,很容易允许将PBI-I用于各种目的。图1a所示的广义发散转录单元由基因X的双向启动子组成,然后是
语言语言:用于评估的英语表格该课程是通过家庭任务单独或组中的家庭任务以及在考试厅单独进行的。如果在相同的考试元素中被拒绝两次的学生希望改变审查员以获取下一个考试机会,则必须以书面形式提交该请求,并批准,如果没有特殊原因,则必须获得批准(HF第6章,第22章)。如果课程停止或经历了重大变化,则必须保证至少三年的考试(包括定期考试)至少一年,但是在课程停止/更改后的两年后。关于实习和VFU,相应的适用,但仅限于额外检查。该课程的等级是经过良好批准的一项(5),经过批准的(4),批准(3)和失败(U)。为了在课程中获得批准,必须批准作业和考试。整个课程的评级由书面考试确定。课程评估该课程是通过教师和学生代表之间的课程和课程的会议来评估课程的。此外,还将匿名问卷用于书面信息。评估结果用于通过显示可以添加,改进,更改或删除的部分来改善课程。其他课程是用Chalmers收集的。课程文献将在课程开始前的8周之前出版。该课程替换了课程DIT250,7.5个学分。本课程不能包括在包含DIT250的程度中。它也不可能是基于包括250的另一个程度的学位的一部分。
化学与化学生物学区域,康奈尔大学,伊萨卡,纽约14853,美国。 摘要线粒体钙Uniporter(MCU)是一种跨膜蛋白,可介导线粒体钙(M Ca 2+)摄取。 MCU的抑制剂对于它们的应用是研究M Ca 2+摄取在细胞功能上的作用的工具。 在这项研究中,我们报告了两个有效的MCU抑制剂,[RU 2(μ-N)(NH 3)8(FCCO 2)2](OTF)3(RUOFC,FC = Ferrecene,OTF = Triflate)和[RU 2(μ-N)(μ-N)(μ-N)(μ-n)(nh 3)(nh 3)8(phco 2)8(phco 2)2](phco 2](oobz)3(OOBZ)3(robz)。 这些化合物是先前报道的抑制剂[RU 2(μ-N)(NH 3)8(Cl)2](Cl)3(RU265)的类似物,分别用铁甲基辅助辅助酯和苯甲酸酯和苯甲酸酯配体衍生。 两种化合物均通过NMR光谱,红外光谱和X射线晶体学合成并充分表征。 在生理条件下,Ruofc和Ruobz Aquate的半衰期分别为2.9和6.5 h,以产生[RU 2(μ-N)(NH 3)8(H 2 O)2](OTF)5(RU265ʹ)和游离羧酸盐。 在N,Nʹ-二甲基甲酰胺(DMF)中RUOFC的环状伏安法揭示了在0.64 V VS SCE处的突出的可逆2E转移事件,对应于两种二甲苯基轴向轴向配体的同时氧化。 所有三个复合物还表现出不可逆的RU基于RU的减少,在–1 V Vs SCE的电位下。 RU265',RUOFC和RUOBZ的DFT计算确认RUOFC的氧化还原活性是由二革新配体引起的。 此外,这三种化合物的Lumo能量与它们不可逆的还原电位相关。 17,18化学与化学生物学区域,康奈尔大学,伊萨卡,纽约14853,美国。摘要线粒体钙Uniporter(MCU)是一种跨膜蛋白,可介导线粒体钙(M Ca 2+)摄取。MCU的抑制剂对于它们的应用是研究M Ca 2+摄取在细胞功能上的作用的工具。 在这项研究中,我们报告了两个有效的MCU抑制剂,[RU 2(μ-N)(NH 3)8(FCCO 2)2](OTF)3(RUOFC,FC = Ferrecene,OTF = Triflate)和[RU 2(μ-N)(μ-N)(μ-N)(μ-n)(nh 3)(nh 3)8(phco 2)8(phco 2)2](phco 2](oobz)3(OOBZ)3(robz)。 这些化合物是先前报道的抑制剂[RU 2(μ-N)(NH 3)8(Cl)2](Cl)3(RU265)的类似物,分别用铁甲基辅助辅助酯和苯甲酸酯和苯甲酸酯配体衍生。 两种化合物均通过NMR光谱,红外光谱和X射线晶体学合成并充分表征。 在生理条件下,Ruofc和Ruobz Aquate的半衰期分别为2.9和6.5 h,以产生[RU 2(μ-N)(NH 3)8(H 2 O)2](OTF)5(RU265ʹ)和游离羧酸盐。 在N,Nʹ-二甲基甲酰胺(DMF)中RUOFC的环状伏安法揭示了在0.64 V VS SCE处的突出的可逆2E转移事件,对应于两种二甲苯基轴向轴向配体的同时氧化。 所有三个复合物还表现出不可逆的RU基于RU的减少,在–1 V Vs SCE的电位下。 RU265',RUOFC和RUOBZ的DFT计算确认RUOFC的氧化还原活性是由二革新配体引起的。 此外,这三种化合物的Lumo能量与它们不可逆的还原电位相关。 17,18抑制剂对于它们的应用是研究M Ca 2+摄取在细胞功能上的作用的工具。在这项研究中,我们报告了两个有效的MCU抑制剂,[RU 2(μ-N)(NH 3)8(FCCO 2)2](OTF)3(RUOFC,FC = Ferrecene,OTF = Triflate)和[RU 2(μ-N)(μ-N)(μ-N)(μ-n)(nh 3)(nh 3)8(phco 2)8(phco 2)2](phco 2](oobz)3(OOBZ)3(robz)。这些化合物是先前报道的抑制剂[RU 2(μ-N)(NH 3)8(Cl)2](Cl)3(RU265)的类似物,分别用铁甲基辅助辅助酯和苯甲酸酯和苯甲酸酯配体衍生。两种化合物均通过NMR光谱,红外光谱和X射线晶体学合成并充分表征。在生理条件下,Ruofc和Ruobz Aquate的半衰期分别为2.9和6.5 h,以产生[RU 2(μ-N)(NH 3)8(H 2 O)2](OTF)5(RU265ʹ)和游离羧酸盐。在N,Nʹ-二甲基甲酰胺(DMF)中RUOFC的环状伏安法揭示了在0.64 V VS SCE处的突出的可逆2E转移事件,对应于两种二甲苯基轴向轴向配体的同时氧化。所有三个复合物还表现出不可逆的RU基于RU的减少,在–1 V Vs SCE的电位下。RU265',RUOFC和RUOBZ的DFT计算确认RUOFC的氧化还原活性是由二革新配体引起的。此外,这三种化合物的Lumo能量与它们不可逆的还原电位相关。17,18对RU265,RUOFC和RUOBZ的生物学特性进行了系统的比较。RUOFC和RUOBZ都抑制了透化HEK293T细胞中M Ca 2+的摄取,但比RU265的有效性低5-7倍。在完整的细胞中,Ruobz被细胞吸收,并以与RU265相似的程度抑制MCU。RUOFC在RU265上表现出10倍的细胞摄取增加,这又导致完整细胞中MCU抑制活性的增强也适度。此外,与RU265相比,RUOFC对HEK293T和HELA细胞具有细胞毒性,其生长抑制浓度分别为23.2和33.9μm,可以利用该特性,这些特性可用于开发MCU推动的抗癌剂。这些结果将RUOFC作为一种有效的MCU抑制剂建立,并且是RU265的轴向配体功能化如何导致具有不同物理和生物学特性的新化合物的另一个例子。简介线粒体钙(M Ca 2+)在广泛的生物学过程中起重要作用,这对于细胞功能至关重要。1,2 M Ca 2+的摄取由线粒体钙Uniporter(MCU)实施,这是一种高度选择性的内部整流Ca 2+通道。3–5升高的M Ca 2+水平与多种病理状况有关,包括缺血再灌注损伤,8,9癌症,10-12和神经退行性疾病。13–16鉴于M Ca 2+参与这些人类疾病,人们对开发可以抑制MCU的化合物越来越兴趣,以防止M Ca 2+过载。13–16鉴于M Ca 2+参与这些人类疾病,人们对开发可以抑制MCU的化合物越来越兴趣,以防止M Ca 2+过载。
全球变暖是当前影响全世界的问题。航空业约占全球排放量的 3%,需要采取措施,通过新技术和替代航空燃料来减少排放,引导该行业实现可持续发展。如今,乘客有机会通过气候补偿来抵消飞行排放。本研究的目的是调查航空和气候补偿行业未来可能如何发展,以及航空业公司如何应用这些知识来影响航空业的可持续发展。借助这些知识,气候补偿替代方案必须能够适应未来的新条件。这项研究的实证数据包括对航空和气候补偿行业的利益相关者以及政治家的采访。行业报告和文献综述与经验数据以及行业动态、网络创新和情景分析等理论相结合,得出了行业未来可能的情景。此外,还得出结论以及对航空公司价格比较网站的管理影响和建议。这项研究的结论是发展现有网络并建立新的网络,以分享航空业内许多不同利益相关者的知识,并利用他们的能力提出立法改革建议,并为航空业未来的可持续解决方案做好准备。网络还应利用其集体力量游说做出决策,推动更可持续的航空业向前发展。这些网络拥有的广泛专业知识可用于向客户提供有关气候补偿好处的知识,并提高他们对航班气候补偿的兴趣。有关气候补偿的营销和信息需要透明,以便客户了解其对气候的影响。生物燃料和电气化航班是未来更有可能实现的可持续解决方案,因为目前生物燃料的价格非常高,而电气化航班还远未准备好取代当今的喷气式飞机。因此,气候补偿是当今减少净排放的最佳选择。
联系人 Mattias Nyman 摘要 全球变暖是当前影响全世界的问题。航空业约占全球排放量的 3%,需要采取措施,通过新技术和替代航空燃料来减少排放,引导该行业实现可持续发展。如今,乘客有机会通过气候补偿来抵消飞行中的排放量。本研究的目的是调查航空和气候补偿行业未来可能如何发展,以及航空业公司如何应用这些知识来影响航空业的可持续发展。借助这些知识,气候补偿替代方案必须能够适应未来的新条件。这项研究的实证数据包括对航空和气候补偿行业的利益相关者以及政治家的采访。行业报告和文献综述与经验数据以及行业动态、网络创新和情景分析等理论相结合,得出了行业未来可能的情景。此外,还得出结论以及对航空公司价格比较网站的管理影响和建议。这项研究的结论是发展现有网络并建立新的网络,以分享航空业内许多不同利益相关者的知识,并利用他们的能力提出立法改革建议,并为航空业未来的可持续解决方案做好准备。网络还应利用其集体力量游说做出决策,推动更可持续的航空业向前发展。这些网络拥有的广泛专业知识可用于向客户提供有关气候补偿好处的知识,并提高他们对航班气候补偿的兴趣。有关气候补偿的营销和信息需要透明,以便客户了解其对气候的影响。生物燃料和电气化航班是未来更有可能实现的可持续解决方案,因为目前生物燃料的价格非常高,而电气化航班还远未准备好取代当今的喷气式飞机。因此,气候补偿是当今减少净排放的最佳选择。
想象您正在接近一扇门,并且它会自动解锁,而又不知道您是谁?在学位项目中,我们探讨了这是否可行,哪些技术功能允许用户以安全且隐私的方式进行身份验证。随着我们的世界越来越多地数字化,保护用户个人信息的安全系统的需求也会增加。我的学位项目名为“使用HO-MOROMORPHIC加密”在IoT设备中保存生物识别身份验证的隐私权,重点是探索如何使用加密来创建一种新型的身份验证系统,既安全又可以整合用户的隐私。加密技术是革命性的,您可以在数据以加密形式的同时实际进行计算。听起来太好了,无法实现...但是这怎么可能?该技术称为同性鱼加密,其名称来自古希腊。它被翻译成“同性恋”相同和“变形”形式或结构。因此,即使以加密形式,数据也保持其结构。同态加密是开创性的技术,它可以对加密数据进行操作而无需解码。这意味着可以处理诸如个人数字或生物识别信息之类的敏感信息,而无需任何未访问实际数据的人。新的加密技术正在不断发展,并为各种用户案例和应用程序选项打开了大门。加密技术有各种实现。ckks是一种实现,并且针对实数的计算进行了优化,当我们从面部识别模型中获取生物识别信息时,它非常适合我们。该研究的结果表明,这种方法不仅提高了安全水平,而且还为库存和可访问性之间的经典困境提供了独特的解决方案。使用CKK,我们可以以以前不可能的方式进行复杂的身份验证工作,这为安全生物特征验证打开了大门。该学位项目已迈出了一步,解决了我们当今社会面临的一些最紧迫的数字安全挑战。这是技术和保护隐私措施的张力时间。未来对于这些高级加密方法的进一步开发和实施看起来很光明。
3D打印的医疗用途正在快速扩展,并且会改变医疗保健的大时间。这些用途可以分为四个主要领域:制造组织和器官,创建定制的植入物和假肢,对药物进行研究,并弄清楚如何将药物置于体内正确的位置。在医学中使用3D打印可以使诸如假肢,设备甚至药物之类的东西为每个人进行超级定制,这真的很酷。它还使事情变得更便宜,帮助人们更有效地工作,让任何人都可以在不需要花哨的机器的情况下设计东西,并将科学家聚集在一起从事项目。,但这并不是所有的阳光 - 在3D打印之前,仍有许多科学和监管挑战确实可以改变医疗保健。人们一直在医学上的3D打印中取得了重大进步,但他们仍在等待最具游戏规则的东西。通过3D打印制造的自定义助听器彻底改变了听力学领域,超过99%的现代助听器是针对个人用户量身定制的。人体的独特复杂性使3D打印模型对于手术制备必不可少,比传统的2D成像方法提供了更准确的表示。此外,神经外科医生可以从3D打印模型中受益,以更好地理解复杂的人体解剖结构。在许多情况下,这些模型有助于医学专业人员在手术前对患者的特定解剖学特征获得宝贵的见解。3D打印技术的最新进步正在彻底改变包括医学在内的各个领域。此外,3D打印的进步导致了定制的药物配方和新型剂型的形式,例如微胶囊和纳米舒张,这对个性化医学有希望。3D打印在医疗应用中的潜在好处包括增加定制和个性化,成本效率,提高生产率,民主化和协作。尽管有希望的应用,但3D打印仍面临一些挑战,包括不切实际的期望和炒作,安全和保安问题,专利和版权问题。虽然已经使用了某些应用程序,但例如器官打印等其他应用程序需要更多的时间来开发。可以在线找到有关3D打印医学应用程序的综合报告,其中包含详细的图像和说明。国家医学图书馆(NLM)提供了对科学文献的访问权限,并维护了一个数据库,其中包含有关医学中3D印刷的信息。但是,将其包含在其数据库中并不意味着与NLM或国家卫生研究院的内容认可或同意。最近的一篇文章回顾了将3D打印应用于医疗领域的一些最新发展,涵盖了当前的艺术状况以及用于医疗应用的3D打印的局限性。美国测试与材料学会(ASTM)国际委员会F42采用了添加剂制造(AM)来从三维数字数据中产生物理对象的技术。手术规划已演变为合并高级技术。在一项研究中,Vodiskat等。添加剂制造(通常称为3D打印)是一种制造方法,可以通过将材料融合或将材料融合到底物上或将物质融合或沉积物质来创建物体。此过程具有高度的用途,可以利用各种材料,例如粉末,塑料,陶瓷,金属,液体或活细胞。通过研究复杂的器官或解剖标本的解剖学和生理学,外科医生可以为操作创建个性化计划。3D模型使他们能够在进入手术室之前探索不同的方法并获得动手经验。此过程大大减少了操作时间并改善了结果。3D印刷患者特定的假体的最新进展使残疾人能够过正常生活。高质量的成像技术允许精确的解剖假体创建,影响包括牙科在内的各个医学领域。将尸体材料用于培训引起了道德问题和成本问题。3D打印通过从CT成像中重现复杂的解剖器官提供了一种新颖的解决方案,适用于没有尸体的情况。能够打印不同尺寸的多个副本的能力也有益于培训设施。可以直接印刷细胞的打印机的开发导致了毒性测试的细胞结构的自动产生,并针对疾病和肿瘤进行了新的治疗方法。这项技术通过允许对匹配天然细胞排列的组织的可重复打印来加速研究过程。使用3D打印模型来对复杂的先天性心脏状况进行术前计划。医学研究的应用包括生产人体器官和组织结构,将它们与模仿本地人体器官的功能相结合。下一步是在操作过程中打印可移植的器官或器官,彻底改变医学。药物输送也将随着3D打印成为药品不可或缺的一部分,可以实现指定剂量和持续的释放层。使用3D打印技术可以实现个性化治疗,并通过创建针对其解剖结构的定制药物输送设备来帮助患者减少药物。这些进步表明,3D打印正在改变医学,许多应用程序使进行详尽的审查变得具有挑战性。最近的几项研究集中在特定领域,例如组织和器官的医学成像,手术和生物打印。本综述旨在通过研究各种应用程序(包括个性化处理,术前计划模型和定制的药物输送设备)来检查2014年以来的发展,从而证明当前的艺术状况。他们采用了两种不同的市售技术来重建三名患者的缺陷,得出结论,有了良好的CT扫描数据,可以创建一种具有成本效益的3D印刷模型。另一个具有挑战性的区域是旧骨盆骨折手术,其中Wu等人。评估了在四年和9个临床病例中使用3D打印的骨盆模型进行术前计划。他们发现术前计划与术后结果之间有良好的相关性,但建议进一步研究以巩固这些模型的使用。Truscott等人。提出了3D打印模型的案例研究,这些模型可以帮助外科医生进行术前计划,从而从骨盆和股骨,眼窝和肩cap骨的CT扫描数据创建模型。他们使用激光插入技术从钛中脱颖而出,与CNC工艺相比,结论一下将材料废物最小化。研究人员使用3D打印技术成功地创建了耳朵假肢(PVDF)。假体对压力变化表现出很高的敏感性,表明在生物医学工程中使用了潜力。传统的患者特异性颅骨成形术假体很昂贵。相比之下,一种具有成本效益的方法使用丙烯酸骨水泥。但是,水泥的手动制造可能很麻烦,可能不会产生令人满意的结果。使用FDM创建了CT扫描数据的3D打印头骨,作为模板来塑造丙烯酸植入物。这种方法在临床环境中的有效性需要进一步研究。一种新型的陶瓷制造技术,结合了冻结的泡沫,实现了开放式孔连接的泡沫结构,可以用作下一代骨骼替代材料,用于个性化植入。提出了一种创建周期性蜂窝结构的设计方法,由材料制成的3D打印植入物将满足较轻的植入物的要求并满足审美和功能需求。最近的研究还使用了3D打印来再现具有精确反映个人特征的组织的巨大潜力的患者特异性组织材料。Khaled等。 Goyanes等。Khaled等。Goyanes等。3D打印模型在解剖学上是准确的,只要提供高质量的CT扫描数据。但是,它们可能不灵活,这使得在涉及大脑(大脑)的软组织的情况下进行应用。使用组合的3D打印,成型和铸造的一种建议的方法创造了逼真的,生理准确和可变形的人脑模型。研究人员已使用独特的技术成功地创建了个性化的大脑模型。这种突破允许创建解剖上准确且可变形的大脑模型,可用于手术计划或医学训练(图3)。此外,科学家还开发了具有成本效益的方法来生产人类解剖学对象的高质量复制品,以进行培训。3D打印技术的发展也导致了癌症研究的重大进步。通过使用HeLa细胞和水凝胶结构创建合成宫颈肿瘤,研究人员已经能够研究该疾病的生长和行为(图4)。这种创新的方法显示出令人鼓舞的结果,肿瘤增殖得更快并形成细胞球体。此外,生物打印已通过微流体网络引导细胞来创建复杂的组织结构。Drexel University的研究人员开发了定制的沉积设备,可以精确材料沉积和异质细胞共培养(图5)。在另一个突破中,科学家使用了3D打印的水凝胶支架来种植微藻和人类细胞的培养物。生物制造。2016; 138(4):041007。2016; 138(4):041007。微藻能够迅速生长,叶绿素含量在几天内增加了16倍。该技术有可能将氧或二级代谢物作为治疗剂提供。技术与生物学的交集导致了3D生物打印的开创性进步。康奈尔大学的研究人员成功地使用水凝胶作为细胞的脚手架打印了全尺寸三叶心脏瓣膜,展示了它们在医疗应用中的潜力。但是,他们指出原型的拉伸强度需要改进。爱丁堡的研究人员通过使用3D打印技术打印功能“迷你肝”,取得了重大进步。他们的创新在于保留3D藻酸盐水凝胶基质中脆弱的臀部细胞的生存力和多能性。这项工作对无动物的药物试验和个性化医学具有深远的影响。超出人体器官的范围,研究人员创建了一个3D形态空间,以描述各种尺度(包括细胞和动物生物)的生物结构。此工具使他们能够探索新的生物配置并研究有关进化的基本问题。此外,伦敦大学学院的研究人员还表明,在制造局部药物输送系统以治疗痤疮等疾病中,有3D生物打印的潜力。他们使用热熔体挤出将水杨酸加载到商业聚合物丝中,突出了该技术的多功能性。3D打印的多功能性可通过调整丝制剂来进行不同的剂量。3D打印技术因其在创建个性化医疗设备(包括药物片和假肢)方面的潜在应用而进行了探索。研究人员发现,立体光刻(SLA)方法可以生产具有精确接触甚至剂量输送的设备。使用桌面3D打印机成功打印了甲烯烃双层片,证明了其产生高质量药物片的潜力。他们比较了药物释放曲线,发现在14小时剂量周期中,一种设计保留在商业药物概况的10%之内。通过使用FDM工艺打印paracetamol的细丝,研究了不同形状对药物释放曲线的影响。他们的结果表明,使用传统方法很难制造复杂的几何形状,但可以更好地控制药物释放。3D印刷和医学生物印刷方面的最新发展在各个领域都具有巨大的潜力。在手术中,3D印刷模型可以帮助外科医生进行计划操作,缩短程序时间和改善结果。也可以快速,经济地创建特定于患者的假肢,使其成为传统解决方案的有吸引力的替代品。Zhao等,Snyder等人和Lode等人等研究人员的工作。已经证明了更准确的疾病模型的潜力,尤其是在癌症研究中。将微流体与3D生物构成整合起来,可以创建复杂的组织结构和共培养物,为功能器官的发展铺平道路。2014; 6(3):035001。 doi:10.1088/1758-5082/6/3/035001。目前,打印整个生物器官仍然是一个遥远的目标。虽然细胞打印可以产生强大的细胞培养,但创建具有必要结构完整性的结构仍然是一个重大挑战。水凝胶矩阵,印刷技术和微流体的整合是通过生物打印来开发功能性人造器官的关键步骤。在不久的将来,3D打印机可能在药房中很普遍,从而实现了个性化的药物输送和制造定制设备。例如,可以通过控制几何形状和精度来实现具有控制药物释放的打印平板电脑。3D印刷在医学中的应用是巨大而变革性的,从创建一次性物体到假肢。随着研发的继续,我们可以期望在个性化药物,器官印刷和手术计划等领域取得令人兴奋的进步。但是,这些技术仍处于早期阶段,需要在广泛采用之前进行进一步的创新和实际考虑。本文讨论了3D打印技术的应用和进步,尤其是在医学领域。作者参考了各种研究和研究论文,探讨了3D印刷在医学中的潜在用途,包括创建假肢,植入物和生物印刷。引用的论文涵盖了一系列主题,从钛植入物的生物相容性到开发用于测试药物毒性的芯片技术。几项研究探讨了3D打印在手术和医学中的使用。生命科学工程学。讨论的其他领域包括三维生物印刷,医学成像和假肢的计算机辅助制造。一些好处包括提高手术计划中的准确性和精度,减少了传统方法上花费的成本和时间,以及改善患者的结果。研究人员还使用3D打印来为具有独特需求的患者创建定制的植入物和假肢。3D印刷在医学中的其他应用包括为训练目的创建实际的器官和组织模型,开发了个性化的神经外科手术计划的大脑模型,以及用诸如压力和温度等内在特性的感觉耳朵假体制造感觉耳朵假体。研究还研究了使用3D打印来生产患者特异性的丙烯酸颅骨成形术,定制的骨盆损伤模板和具有量身定制的机械性能的功能多孔结构。此外,研究人员还探索了用于生物医学应用的陶瓷和金属陶瓷复合材料的创新制造方法。3D打印在手术中的优点包括其创建复杂形状和结构,减少废物和材料消耗的能力,并提高手术计划的准确性和精度。但是,这项技术也存在一些挑战和局限性,例如对专业设备和专业知识的需求以及对灭菌和感染控制的潜在关注。总体而言,3D打印有可能彻底改变手术和医学的各个方面,从术前计划到植入植入物和患者护理。2015; 15(2):177–183。2015; 15(2):177–183。Zhang等人,用于体外Zhang T,Zhang T,Cheng S,Sun W.宫颈肿瘤模型的HeLa细胞三维印刷。Zhang等人,用于细胞设备的微流体歧管制造Snyder J,Son AR,Hamid Q,Sun W.通过精确挤出沉积和含细胞装置的复制模制来制造微流体歧管。制造科学与工程杂志。lode等人,绿色生物打印Lode A,Krujatz F,BrüggemeierS,Quade M,SchützK,Knaack S,Weber J,Bley J,Bley T,Bley T,Gelinsky M. Green Bioprinting:光合作用藻类Laden Hadegae Laden Hydogel scapforts的生物性和医学物质。duan等人,异质主动脉阀Conduits Duan B,Hockaday LA,Kang KH,Butcher JT的3D生物打印。与藻酸盐/明胶水凝胶异质主动脉瓣导管的3D生物打印。生物医学材料研究杂志研究部分A。2013; 101(5):1255–1264。 Faulkner-Jones et al., Bioprinting of human pluripotent stem cells Faulkner-Jones A, Fyfe C, Cornelissen DJ, Gardner J, King J, Courtney A, Shu W. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. 生物制造。 2015; 7(4):044102。 ollé-Vila等,合成器官和类符号的形态 - ollé-vila A,Duran-Nebreda S,Conde-Pueyo N,MontañezR,SoléR。 综合生物学。 2016; 8(4):485–503。 受控释放杂志。 2016; 234:41–48。2013; 101(5):1255–1264。Faulkner-Jones et al., Bioprinting of human pluripotent stem cells Faulkner-Jones A, Fyfe C, Cornelissen DJ, Gardner J, King J, Courtney A, Shu W. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D.生物制造。2015; 7(4):044102。ollé-Vila等,合成器官和类符号的形态 - ollé-vila A,Duran-Nebreda S,Conde-Pueyo N,MontañezR,SoléR。综合生物学。2016; 8(4):485–503。 受控释放杂志。 2016; 234:41–48。2016; 8(4):485–503。受控释放杂志。2016; 234:41–48。2016; 234:41–48。Goyanes等人,3D扫描和印刷,用于个性化药物交付Goyanes A,Det-Amornrat U,Wang J,Basit AW,Gaisford S. 3D Scanning和3D打印作为用于制造个性化局部药物输送系统的创新技术。Khaled等人,桌面3D打印的受控释放制药双层片Khaled SA,Burley JC,Alexander MR,Roberts CJ。桌面3D打印受控释放的药品双层平板电脑。国际药品杂志。2014; 461(1):105–111。 Goyanes等人,几何形状对3D印刷片剂Goyanes A,Martinez PR,Buanz A,Basit AW,GaisfordS。几何形状对3D印刷平板的药物释放的影响。 国际药品杂志。 2015; 494(2):657–663。2014; 461(1):105–111。Goyanes等人,几何形状对3D印刷片剂Goyanes A,Martinez PR,Buanz A,Basit AW,GaisfordS。几何形状对3D印刷平板的药物释放的影响。国际药品杂志。2015; 494(2):657–663。2015; 494(2):657–663。
Eduan Wilkinson 1,2 † , Marta Giovanetti 3,4 † , Houriiyah Tegally 1 † , James E. San 1 † , Richard Lessells 1 , Diego Cuadros 5 , Darren P. Martin 6,7 , David A. Rasmussen 8, Abdelman , N. R. 11 , Abdoul-Salam Ouedraogo 12 , Abdul K. Sesay 13 , Abechi Priscilla 14 , Adedotun-Sulaiman Kemi 14 , Adewunmi M. Olubusuyi 15 , Adeyemi OO Oluwapelumi 16 , Adnène Hammami 17 , Adri 18 , Ahmad Ahne d 20 , Ahmed EO Ouma 21 , Aida Elargoubi 22,23 , Nnennaya A. Ajayi 24 , Ajogbasile F. Victoria 14 , Akano Kazeem 14 , Akpede George 25 , Alexander J. Trotter 26 , Ali A. Yahaya 27 , Alpha Kello 28 , Diapha K. , Amadou Kone 31 , Amal Souissi 32 , Amel Chtourou 17 , Ana V. Gutierrez 26 , Andrew J. Page 26 , Anika Vinze 33 , Arash Iranzadeh 6,7 , Arnold Lambisia 34 , Arshad Ismail 35 , Audu Rosemary , Augustina 36 14 , Azeddine Ibrahimi 38 , Baba Marycelin 39 , Bamidele S. Oderinde 39 , Bankole Bolajoko 14 , Beatrice Dhaala 40 , Belinda L. Herring 27 , Berthe-Marie Njanpop-Lafourcade 27 , Bronny Klein Inhan , Bryn McWynn 14 Tegomoh 42 , Cara Brook 43,44 , Catherine B. Pratt 45 , Cathrine Scheepers 35,46 , Chantal G. Akoua-Koffi 47 , Charles N. Agoti 34,48 , Christophe Peyrefitte 30 , Claudia Dauben 49 , James Noberger , Ds Nokerang . 34,51 , Daniel G. Amoako 35 , Daniel L. Bugembe 40 , Danny Park 33 , David Baker 26 , Deelan Doolabh 7 , Deogratius Ssemwanga 40,52 , Derek Tshiabuila 1 , Diarra Bassirou 30 , Dominic SY Amuzu 50 , Dominique Ohal Ohal 53 34 , Dorcas Maruapula 54 , Ebenezer Foster-Nyarko 26 , Eddy K. Lusamaki 18,19 , Edgar Simulundu 55 , Edidah M. Ong 'era 34 , Edith N. Ngabana 18,19 , Edwin Shumba 56 , Elmo Stafahi , Fahi Emma Loma 1877 Mukantwari 58 , Eromon Philomena 14 , Essia Belarbi 59 , Etienne Simon-Loriere 60 , Etilé A. Anoh 47 , Fabian Leendertz 59 , Faida Ajili 61 , Fakayode O. Enoch 62 , Fares Wasfi 63 , Fat Moula Abstau , 32 , 27 , Fausta Mousta . , Faustinos T. Takawira 65 , Fawzi Derrar 66 , Feriel Bouzid 32 , Folarin Onikepe 14 , Fowotade Adeola 67 , Francisca M. Muyembe 18,19 , Frank Tanser 68,69,70 , Fred A. Drati 27 , Gabriel Gabriel 19 . 26 , Gemma L. Kay 26 , George Githinji 34,71 , Gert van Zyl 41,72 , Gordon A. Awandare 50 , Grit Schubert 59 , Gugu P. Maphalala 73 , Hafaliana C. Ranaivoson 44 , Hajar Lemris 74 , 74 , Abe Haruka , Abe Hase . Karray 17 , Hellen Nansumba 76 , Hesham A. Elgahzaly 77 , Hlanai Gumbo 65 , Ibtihel Smeti 32 , Ikhlas B. Ayed 32 , Ikponmwosa Odia 25 , Ilhem Boutiba Ben Boubaker 78,79 , Imed Galoul 27 , Galou Inzy , 80 , Isaac Ssewanyana 76 , Iyaloo Konstantinus 81 , Jean B. Lekana-Douk 82 , Jean-Claude C. Makangara 18,19 , Jean-Jacques M. Tamfum 18,19 , Jean-Michel Heraud 30,44 , Jeffrey Shand , Jeffery Jing 18 . 4 , Jiro Yasuda 75 , Joana Q. Mends 85 ,Jocelyn Kiconco 52,John M. Morobe 34,John O. Gyapong 85,Johnson C. Okolie 14,John T. Kayiwa 40,Johnathan A. Edwards 68,86,Jones Gyamfi 85,Jouali Farah 80 ,Kayode T. Adeyemi 14,Kefentse A. Tumedi 88,Khadija M.说34,Kim Hae -Young 8 Labehna Matshelebogo I92。MadouDiop 30,Manel Turki 32,Marietou Paye 33,Martin M. Nyaga 94,Mathabo Mareka 95,Maureen W. Mburu 34,Maximillian Mpina 49,097,Michael O,Michael O,9 Mba Mirabeau T. Mirabeau T. Youtchou 101,MoItobhaim Himaim Himaim Himabhaime nmamed g ,Mohamed G. Seadawy 104,Mohamed K. Khalifa 20,Mooko Sekhele 95,Mouna Ouadghiri 5 Moussa M. 38,35,我的VT Phan 40,Nabil Abid 79,106,Nadia Touil 107 IO Mabunda Sio 179,H1 7,Y Nsenga 27,Nicksy Gumede 27,Nicola Mulder 112,Nneemeka Ndodo 99,Norosoa H Razanajatovo 44,Nosamiefan Iguosadolo 14 Omoruyi E. Chukwuma 67,Onwe E. Ogah 115,Chika K. Onwuamah 36,138,Oshomah Cyril 25,Ousmane Faye 30 Combe 1,Tom Sca oyewale Patrick Semanda 76,Paul O. Oluniyi 14,Paulo Arnaldo Arnaldo 110,Paulo Arnaldo,Paulo a. A 18,19,Richard 1 Phillips 85 RMAN 118,Robert A. Kingsley 26,Rosina AA Carr 85,SaâdElKabbaj 119,Saba Gargouri 17,Saber Masmoudi 32,Safietou Sankhe 30,Salako B. Lawal 36 Ignac-Spencer 59,Stephen F. Schaffner 33,Seydou Doumbia 31,Sheila M. Mandanda 18,19,Sherihane Aryeetey 123 El Ham 3 Ham Andriamandimby 44,Sobajo Tope 14,Sonia Lekana-Douki 82 26,Sumir Panji Eshbrech 112,Susan Nabadda 76,Sylvie Behillil 126,Sylvie L. Budiaki 95,Sylvie van der Werf 126,Tapfumanei Mashe 65,Tarik Aanniz 35 ,Uwanibe Jessica 14,Uwem George 14 , Vagner Fonseca 1,4,128 , Vincent Enouf 126 , Vivianne Gorova 129,130 , Wael H. Roshdy 123 , William K. Ampofo 50 , Wolfgang Preiser 41,72 , Wonderful T. Choga 54,131 , Yaw Bediako 50 , Yeshnee Naidoo 1 , Yvan Butera 108,132,133 , Zaydah R. de Laurent 34 , Amadou A. Sall 30 , Ahmed Rebai 32 , Anne von Gottberg 35,139 , Bourema Kouriba 12 , Carolyn Williamson 7,69,111 , Daniel J. Bridges 105 , Ihekweazu Chikwe 99 , Jinal N. Bhiman 35,139 , Madisa Mine 134 , Matthew Cotten 40,135 , Sikhulile Moyo 54,136 , Simani Gaseitsiwe 54,136 , Ngonda Saasa 55 , Pardis C. Sabeti 33 , Pontiano Kaleebu 40 , Yenew K. Tebeje 21 , Sofonias K. Tessema 21 , Christian Happi 14 , John Nkengasong 21 , Tulio de Oliveira 1,2,69,137 *