fanconi贫血(FA)是一种可遗传的综合征,其特征是DNA损伤修复缺陷,频繁畸形以及骨髓衰竭,白血病,粘膜头和颈部鳞状细胞癌(HNSCC)的风险显着升高。造血干细胞基因疗法可以预防骨髓衰竭和降低白血病风险,但降低HNSCC风险的粘膜基因疗法仍未受过测试。主要的知识差距包括对基因校正的细胞谱系如何通过口服上皮传播的方式不完整的理解,哪些递送参数对于确保有效的基因校正至关重要。为了回答这些问题,我们扩展了一个基于代理的口服上皮模型,包括将基因校正原位传递到FA细胞以及具有和没有基因校正的细胞谱系之间的竞争动力学。我们发现,只有具有实质性增殖优势的基因校正谱系(抵抗基础层的替代概率)才能扩散在临床上相关的时间表上,并且这些时间≥0。1个谱系最初在校正后几代人的损失风险很高。将基因校正传递到许多细胞中,可以最大程度地减少损失的风险,而在组织内部的许多不同位置的传递可最大化扩散率。为了确定粘膜基因治疗对防止克隆膨胀突变的影响,我们比较了有或没有基因校正的模拟组织切片中TP53突变的预期负担。我们发现,当FA细胞具有升高的基因组不稳定性或TP53依赖性增生优势时,基因校正可以大大减少促肿瘤突变的积累。该模型说明了计算框架确定治疗成功的关键决定因素,以实现实验优化并支持新颖和有效的基因治疗应用。
抽象背景选择性生物标志物可能会改善接受免疫检查点抑制剂治疗治疗的复发或转移性头颈鳞状细胞癌(R/M HNSCC)患者的预后。我们研究了三种独立的生物标志物,以与一线Durvalumab单疗法或Durvalumab或Durvalumab以及Extremimimab与ExtremeMimen相比的随机,III期Kestrel研究(NCT02551159)相关性:中性粒细胞与淋巴细胞比(NLR)。分析了在Kestrel研究患者的肿瘤或血液样本中,分析了PD-L1,BTMB和NLR的肿瘤或血液样本。与PD-L1(肿瘤细胞[TC]≥50%/免疫细胞≥50%/免疫细胞≥25%或TC≥25%)的预先指定的临界值进行了评估。进行了临时分析。PD-L1的预先指定或探索性截止值不丰富Durvalumab单一疗法或Dur-Valumab加上tremelimenab与Extreme的ORR或OS。在BTMB≥16mut/mb亚组中,Durvalumab单疗疗法和Durvalumab的OS危险比(95%置信区间)和Extremab与Extreme的分别为0.90(0.48-1.72)和0.69(0.69(0.39-1.25)。 Durvalumab加上TremelimumAb的完整响应率为8.6%,极端响应率为4.3%(≥16mut/mb亚组)。 在预先指定或探索性的NLR截止值下,杜瓦卢马布单一疗法或杜瓦卢马布(Durvalumab)的OS没有改善。分别为0.90(0.48-1.72)和0.69(0.69(0.39-1.25)。Durvalumab加上TremelimumAb的完整响应率为8.6%,极端响应率为4.3%(≥16mut/mb亚组)。在预先指定或探索性的NLR截止值下,杜瓦卢马布单一疗法或杜瓦卢马布(Durvalumab)的OS没有改善。结论BTMB证明了选择R/M HNSCC患者的潜在效用,这些患者受益于有或没有tremelimenab的杜瓦卢马布,而不是极端。试验注册临床.gov标识符NCT02551159。
*必须天真。†或≤4线如果≥2TKI。‡必须包括PD-1阻断抗体。§除了那些对靶向疗法敏感的已知癌基因驱动因素的患者。||如果BRAF突变为阳性,则可能已经收到Brafi/Meki。¶如果BRAF突变为阳性,则必须收到Brafi/Meki。#如果已知的癌基因驱动器突变,则必须接受有针对性的治疗。缩写:BRAFI,BRAF抑制剂; CPI,检查点抑制剂; ECOG,东部合作肿瘤学小组; FEV 1,在1秒内强迫呼气量; HNSCC,头颈部鳞状细胞癌; ICI,免疫检查点抑制剂; Meki,Mek抑制剂; NSCLC,非小细胞肺癌; PD-1,程序性细胞死亡蛋白1;恢复,实体瘤的反应评估标准; TIL,肿瘤浸润淋巴细胞; TKI,酪氨酸激酶抑制剂。
人类表皮生长因子受体 (EGFR) 也称为 ErbB-1 或 HER1,是 ErbB 受体家族的成员。它是一种广泛研究的致癌基因,影响基因表达、增殖、血管生成、凋亡抑制、细胞运动、转移、粘附和血管生成。作为精准治疗的首要目标之一,尤其是由于肺癌中发现的高水平突变,人们自然而然地认为头颈癌患者可能受益于 EGFR 靶向疗法。这是因为 EGFR 在超过 90% 的头颈部肿瘤中过表达 (2),并且这种关联意味着患者生存期较短 (3-5)。HNSCC 的 EGFR 表达显著增加,EGFR 扩增频率高,单核苷酸变异 (SNV)/插入缺失率低 (6)。
hc =健康对照; OC =口腔癌; OSCC =口腔鳞状细胞癌; OSMF =口服粘膜纤维化; op = oropharynx; HNSCC =头颈鳞状细胞癌; PML =预先病变; 8-OHDG = 8-羟基氧鸟苷; kif1a =运动蛋白家庭成员1a; EDNRB =内皮素受体B型; timp3 =金属蛋白酶3的组织抑制剂3; pCQAP = PC2谷氨酰胺/Q-富蛋白; PCR =聚合酶链反应; DAPK1 =与死亡相关的蛋白激酶1; OSMF =口服粘膜纤维化; RT-QMSP =实时定量甲基化特异性PCR;磷酸src =磷酸化src; TC =舌头癌; MSP =甲基化特异性PCR; maspin =乳腺丝氨酸蛋白酶抑制剂陷阱=端粒酶重复放大方案; mgmt =甲基鸟氨酸-DNA-甲基转移酶; raASF1A =含含域的含有域的蛋白; Med15 =介体复合体亚基15
5.2使用ViewRNA测定2.0上的ViewRNA分析,对肿瘤3和肿瘤4区域的靶向空间RNA分析。与HNSCC样品的肿瘤3相比,淋巴细胞激活和募集面板的标记在肿瘤4中高度表达[图A和B]。肿瘤4中CXCL9和CXCL13的局部模式表明,细胞因子通过募集CD8 T+细胞促进了抗肿瘤活性。同样,来自免疫激活和反应签名面板的RNA靶标位于肿瘤4中,包括干扰素[图C和D]。STAT1和CD3的定位表明激活了各种细胞过程,例如免疫反应和对靶向癌细胞靶向癌细胞的凋亡4。在肿瘤4中发现的成熟TLS中也发现了这些标记的较高定位[图E和F]。
缩写:1L,第一行; 2L,第二行; BC,乳腺癌; BSAB,双特异性抗体; BTC,胆道癌; CCR8,C-C基序趋化因子受体8; CRC,结直肠癌; DGKζ,二酰基甘油激酶ζ; GC,胃癌; GEA,胃食管腺癌; HER2,人表皮生长因子受体2; HNSCC,头和颈部鳞状细胞癌HPK1,造血祖细胞激酶1; lag3,淋巴细胞激活基因3; LS-SCLC,有限阶段的小细胞肺癌; MBC,转移性乳腺癌; MSS,微卫星稳定性; OX40,肿瘤坏死因子(TNF)受体家族的成员,也称为CD134。 RCC,肾细胞癌; r/r,复发/耐火; SCLC,小细胞肺癌; SMAC,第二个线粒体衍生的caspase激活剂; TIM3,T细胞免疫球蛋白结构域和粘蛋白结构域3; UC,尿路上皮癌。
缩写:AcCC,腺泡细胞癌;AdCC,腺样囊性癌;EOLP,糜烂性口腔扁平苔藓;F,冰冻;Fe,女性;FFPE,福尔马林固定石蜡包埋;FoM,口底;HNSCC,头颈部鳞状细胞癌;HPV,人乳头瘤病毒;M,男性;MEC,粘液表皮样癌;N,数量;NEOLP,非糜烂性口腔扁平苔藓;NR,未报告;OKC,口腔角化囊肿;OL,口腔白斑;OLP,口腔扁平苔藓;OP,口腔癌前病变;OPSCC,口咽鳞状细胞癌;OSCC,口腔鳞状细胞癌;PA,多形性腺瘤;PBMC,外周血单核细胞;R,范围;rOSCC,复发性口腔鳞状细胞癌; SGT,涎腺肿瘤;WA,沃辛瘤。
对ICI的主要耐药性在包括HNSCC在内的所有肿瘤类型中都经常存在,并且涉及几乎60%的患者总体上[7]。令人担忧的是,有些患者甚至会在免疫疗法[过度疾病(HPD)] [8]中经历肿瘤生长动力学(TGK)加速。在2017年回顾了来自四个不同机构的PD1/PDL1抑制剂的34例患者的医学图表,发现HPD经常出现(29%),并且结果较差[8]。其他研究发现在不同肿瘤类型的HPD速率不同[9,10],但没有一致的预测基因组或临床特征。所有人都是回顾性的,没有控制臂。因此,HPD与ICI的因果关系尚未得到证明,并且在观察到的病例中不能排除该疾病的自然演变。许多临床前研究都有假设的机制,但没有明确的生物学解释。
简单总结:将 EGFR 靶向疗法(如西妥昔单抗)与 PI3K/Akt 通路强效抑制剂相结合可能是一种可能克服/规避耐药性的新型治疗策略。有趣的是,EGFR 下游的所有通路都在调节自噬反应中发挥作用,因此将 EGFR 靶向疗法与 PI3K/Akt 通路抑制剂相结合可导致治疗诱导的自噬。在这篇简短的评论中,我们讨论了这种组合策略中治疗诱导的自噬可能不一定是坏兆头,因为自噬也可能是一种细胞死亡机制。我们强调,阐明促进自噬细胞死亡的具体细胞要求仍然具有挑战性,并用最近的文献说明了这一点。由于自噬还通过确保抗原的释放在抗肿瘤免疫中发挥作用,可能导致肿瘤的识别和消除,我们认为值得研究自噬作为 HNSCC 的抗肿瘤机制。