利用 TALEN® 技术,我们开发了一种基因编辑过程,通过同源性定向修复在造血干细胞和祖细胞 (HSPC) 中实现高效的基因校正和基因插入。我们首先评估了非病毒线性单链 DNA (LssDNA) 供体模板递送策略与更常用的病毒 (AAV) 递送的潜力。这两种策略均导致基因在体外插入 HSPC。然后,我们比较了 LssDNA 与环化单链 DNA (CssDNA) 的使用情况。我们发现环化显著提高了敲入 (KI) 效率,相对于其线性对应物。有趣的是,KI 的这种增加分别与环状和线性 ssDNA 编辑细胞中更高的存活率和更低的敲除 (KO) 相关。总体而言,我们表明,与 TALEN® 基因编辑相关的非病毒 ssDNA 传递可在长期重新植入的造血干细胞中实现高水平的基因校正。ssDNA 的环化有可能进一步提高 KI 的速率,而不会影响细胞活力和适应性,从而促进下一代细胞疗法的发展。
化学疗法或内源性醛。ICL的形成触发FA核心综合以定位于DNA病变,然后募集其他含FA蛋白质的复合物和ICL修复酶(4)。FA基因中的不活性突变导致无法修复ICL,从而导致杂种不稳定性。 FA造血干细胞和祖细胞(HSPC)中的DNA损伤会激活MYC和遗传毒性应激/TP53途径,并诱导炎症的炎性细胞因子信号传导(1,5,6)。 通过先前未定义的下流事件,这些变化驱动了FA中的HSPC损失和/或血液系统恶性肿瘤。 在JCI的这个问题中,Casado等。 通过识别免疫介导的机制来提供这种缺失的下游链接,通过该机制激活DNA损伤途径会导致BMF(7)(图1)。FA基因中的不活性突变导致无法修复ICL,从而导致杂种不稳定性。FA造血干细胞和祖细胞(HSPC)中的DNA损伤会激活MYC和遗传毒性应激/TP53途径,并诱导炎症的炎性细胞因子信号传导(1,5,6)。通过先前未定义的下流事件,这些变化驱动了FA中的HSPC损失和/或血液系统恶性肿瘤。在JCI的这个问题中,Casado等。通过识别免疫介导的机制来提供这种缺失的下游链接,通过该机制激活DNA损伤途径会导致BMF(7)(图1)。
不眠之夜可能会感到痛苦,但是Sleep的振兴力量是实质性的,这使康复睡眠是无效的生理重置的想法。最近的研究表明,赶上睡眠不足以中和睡眠债务的负面影响,但无法理解控制睡眠破坏长期影响的机制。在这里,我们表明睡眠中断会重组造血茎和祖细胞(HSPC)的表观基因组,并增加其增殖,从而通过加速遗传漂移来降低造血性克隆多样性。睡眠破碎化对HSPC表观基因组产生了持久的影响,对髓样命运的承诺偏向于弥漫的炎症爆发。将造血克隆跟踪与数学建模相结合,我们推断出睡眠通过限制中性漂移来保留克隆多样性。在人类中,睡眠限制会改变HSPC表观基因组并激活造血。这些发现表明,通过校准造血表观基因组,约束炎症输出并保持克隆多样性,睡眠会减慢造血系统的衰变。
自体造血干细胞移植 (ASCT) 可改善多发性骨髓瘤 (MM) 患者的生存率。然而,许多患者无法通过粒细胞集落刺激因子 (G-CSF) 动员收集到最佳数量的 CD34 + 造血干细胞和祖细胞 (HSPC)。莫替沙福肽是一种新型环肽 CXCR4 抑制剂,具有延长的体内活性。GENESIS 试验是一项前瞻性、3 期、双盲、安慰剂对照、多中心研究,目的是评估莫替沙福肽 + G-CSF 相对于安慰剂 + G-CSF 在动员 MM 患者进行 ASCT 的 HSPC 方面的优势。主要终点是两次血液分离术中收集到 ≥6 × 10 6 CD34 + 细胞 kg –1 的患者比例;次要终点是在一次血液分离术中实现这一目标。共有 122 名接受 ASCT 的 MM 成人患者在 5 个国家的 18 个研究中心入组,并按 2:1 的比例随机分配接受莫替沙福肽 + G-CSF 或安慰剂 + G-CSF 进行 HSPC 动员。莫替沙福肽 + G-CSF 使 92.5% 的患者成功达到主要终点,而安慰剂 + G-CSF 组为 26.2%(比值比 (OR) 53.3,95% 置信区间 (CI) 14.12–201.33,P < 0.0001)。莫替沙福肽 + G-CSF 还使 88.8% 的患者达到次要终点,而安慰剂 + G-CSF 组为 9.5%(OR 118.0,95% CI 25.36–549.35,P < 0.0001)。 Motixafortide + G-CSF 安全且耐受性良好,最常见的治疗中出现的不良事件是短暂的 1/2 级注射部位反应(疼痛,50%;红斑,27.5%;瘙痒,21.3%)。总之,与安慰剂 + G-CSF 相比,Motixafortide + G-CSF 在两次白细胞分离术中动员的 CD34 + HSPC 数量显著增加,同时优先动员更多免疫表型和转录原始的 HSPC。试验注册:ClinicalTrials.gov,NCT03246529
基因修饰或插入最初于 20 世纪 70 年代初提出作为治疗遗传性疾病的方法 [ 1 ]。造血干细胞 (HSC) 是基因治疗的首选目标,因为它们能够维持终生造血,从而能够持久缓解一系列疾病。目前,遗传性血液疾病的基因治疗方法主要包括从患有潜在遗传缺陷的个体中提取造血干细胞和祖细胞 (HSPC),并在体外进行基因修饰后进行过继转移(图 1 a)。数十年来在临床上进行的同种异体 HSPC 移植为这种新方法的治疗转化提供了路线图。在自体移植基因修饰的 HSPC 时,可以避免同种异体反应性并发症并降低预处理方案的复杂性,与同种异体 HSPC 移植相比,它们具有显著优势。使用基于 γ 逆转录病毒载体的基因递送载体的临床试验最初于 20 世纪 90 年代获得批准,但仅检测到少量校正细胞,并且未观察到潜在缺陷的表型校正。重新关注优化体外转导条件和增加预处理方案以利于转导细胞的植入,导致在原发性免疫缺陷患者中首次获得明确的临床成功[2-4]。然而,随后报告称接受治疗的患者中载体介导的原癌基因插入激活导致恶性肿瘤[5-7],这鼓励了主要基于 HIV-1 慢病毒亚家族逆转录病毒的替代载体设计的开发(图 1b)。慢病毒载体的独特成分促进其在非分裂的 HSPC 内的核易位,进一步增强这些细胞的转导。这些载体中 3′-LTR 启动子和增强子元件的消除也提供了一个关键的自失活 (SIN) 安全特性,以减轻对可能与内源性 HIV 颗粒重组或载体整合基因组位点附近原癌基因意外激活的担忧。然而,对于这些 SIN 载体,转基因表达的效率高度依赖于添加
摘要:慢性肉芽肿病 (CGD) 是一种遗传性免疫缺陷病,主要由 X 连锁 CYBB 基因突变引起,该突变会破坏吞噬细胞和微生物防御中的活性氧 (ROS) 产生。使用造血干细胞和祖细胞 (HSPC) 中的 CRISPR/Cas9 系统进行基因修复是一种很有前途的 CGD 治疗技术。为了支持建立有效且安全的 CGD 基因疗法,我们生成了一种携带患者来源的 CYBB 基因突变的小鼠模型。我们的 CybbC517del 小鼠系显示出 CGD 的特征,并为 Cybb 缺陷的 HSPC 提供了来源,可用于评估体外和体内的基因治疗方法。在 HSPC 中使用 Cas9 RNPs 和 AAV 修复载体的设置中,我们表明 19% 的治疗细胞中的突变可以得到修复,并且治疗可以恢复巨噬细胞的 ROS 产生。总之,我们的 CybbC517del 小鼠系为改进和评估新型基因疗法以及研究 X-CGD 病理生理学提供了一个新的平台。
有针对性的基因组编辑具有治疗需要蛋白质替代疗法的疾病的巨大治疗潜力。为了开发独立于特定患者变形的平台,可以将治疗转基因插入安全且高度转录的基因座,以最大程度地提高蛋白质表达。在这里,我们描述了一种实现人类造血干/祖细胞(HSPCS)中有效基因靶向有效基因的方法,并通过红细胞动力学谱系对临床相关蛋白质的鲁棒表达。使用CRISPR-CAS9,我们在内源性α-珠蛋白启动子的转录控制下整合了不同的转基因,从而概括了其高和红细胞的特异性表达。源自靶向HSPC的促成的细胞分泌不同的治疗蛋白,该蛋白保留了酶活性和交叉校正患者细胞。此外,修饰的HSPC在移植小鼠中保持长期重生和多系分化潜力。总的来说,我们为不同的治疗应用(包括血友病和遗传的代谢疾病)建立了一个安全且通用的基于CRISPR-CAS9的HSPC平台。
在过去的十年中,非病毒DNA模板递送已与工程核酸酶一起使用,以靶向造血茎和祖细胞中的单链DNA序列。虽然对基因治疗有效,但该方法仅限于简短的DNA供体模板,从而限制了其对基因矫正的应用。为了扩大其范围,我们使用千层长的圆形单链DNA供体模板和TALEN技术开发了一个编辑过程。我们的结果表明,CSSDNA编辑过程可在可行的HSPC中实现高基因插入频率。与常规的AAV编辑过程相比,CSSDNA编辑的HSPC显示出更高的植入和维持鼠模型中基因编辑的倾向。这种积极的结果部分是由于较高水平的原始编辑的HSPC,更静止的代谢状态以及骨髓粘附标记的表达升高。我们的发现突出了CSSDNA作为基因治疗应用的通用和有效的非病毒DNA模板的强大潜力。
图 S2。反式配对切口方法导致人类 HSPC 中的 HDR 效率低下。(A) 使用 CRISPR/Cas9、单切口或反式配对切口方法在 HEK293T 细胞中将 T2A-mCherry 插入人类 B2M 基因座的靶向策略。使用没有 (pDonor) 或有 2 个靶序列 (TS) (pDonor-Nick 2) 的供体质粒。靶向 B2M 的常见 sgRNA 以红色表示。使用所示方法靶向 B2M 基因座六天后,对 mCherry + HEK293T 细胞的百分比进行 FACS 分析。图表总结了通过 FACS 测量的 mCherry + (HDR) HEK293T 细胞的频率。(B) 使用 CRISPR/Cas9、单切口或反式配对切口方法在人类 HSPC 中将 T2A- mCherry 插入人类 B2M 基因座。使用单链 (ss) AAV 和不含 (scAAV) 或含 2 个 TS 的自互补 (sc) AAV (scAAV-Nick 2 ) 作为供体模板。FACS 分析显示靶向三天后 mCherry + HSPC 的频率。条形图显示 HDR (mCherry + ) 效率。数据显示为四次独立实验的平均值 ± SD。
镰状细胞病 (SCD) 是由成人血红蛋白 (Hb) 链中的单个氨基酸变化引起的,这种变化会导致 Hb 聚合和红细胞 (RBC) 镰状化。导致胎儿 珠蛋白在成年期产生的突变共同遗传,胎儿 Hb 的遗传性持续性 (HPFH) 降低了 SCD 的临床严重程度。HBG 珠蛋白启动子中的 HPFH 突变会破坏阻遏物 BCL11A 和 LRF 的结合位点。我们使用 CRISPR-Cas9 通过产生插入和缺失来模拟 HBG 启动子中的 HPFH 突变,从而导致已知和推定的阻遏物结合位点的破坏。编辑患者来源的造血干/祖细胞 (HSPC) 中的 LRF 结合位点可导致 珠蛋白去阻遏和镰状表型的纠正。用靶向 LRF 结合位点的 gRNA 处理的 HSPC 异种移植在重新植入 HSPC 方面表现出较高的编辑效率。这项研究确定了 LRF 结合位点是基因组编辑治疗 SCD 的有力靶点。