图1 |手性卤化物钙钛矿的光学和自旋表征的示例[1]。(S -HP1A)2 PBBR 4的晶体结构,具有4 3和4 1对称元素的插图。b(S -HP1A)2 PBBR 4和(R -HP1A)2 PBBR 4的薄膜的圆形二色性和 - s斑谱光谱。C磁性原子力M- croscopy(MC-AFM)测量的示意图。 d在(S -HP1A)2 Pbbr 4(红色)和(R -HP1A)2 PBBR 4(蓝色)中的自旋极化的平均值。C磁性原子力M- croscopy(MC-AFM)测量的示意图。d在(S -HP1A)2 Pbbr 4(红色)和(R -HP1A)2 PBBR 4(蓝色)中的自旋极化的平均值。
近年来簇化合物化学中所取得的主要进步主要与众多核性的许多低价羰基簇的结构有关,尤其是VIIII组金属的特征。1-lf金属羰基簇的形成少于过渡系列开始时元素的特征。簇化合物具有“经典”的酸性 - 卤素和葡萄糖剂等“经典”的酸 - 长期以来一直以这些金属的闻名,并且已经对其进行了彻底的研究。5“ 8与低价金属羰基簇相反,在带有“经典”配体的簇化合物中,金属原子具有较高的形式氧化态,因此这些化合物被分类为高价值簇。“*虽然过渡金属卤化物簇的第一代表早在本世纪初就获得了9个关于niobium,tantalum,tantalum,moleybdenum,tungsten和Rhenium Halide以及与各种配体的剧烈研究的剧烈研究。在过去的二十年中。5»6'8簇化合物的首次结构研究是根据六核钼簇进行的。1 0与卤化物配体的过渡系列开始时,金属的络合物的结构,群集组中的金属原子数量从2到6不等。
2004年石墨烯的突破,当时它是第一个同样的,揭示了2D材料的独特特性,并推动了2D材料研究的增长。这导致发现了许多新型的单层材料,例如苯苯丙烯,过渡金属二核苷(TMDS)和六核氮化物。这些材料由于其对电子应用的有希望的特性而引起了科学界社区中的巨大兴趣。tmds由于其多功能性和可调性,在包括催化,储能和光电子的各种应用中被证明具有吸引力。1尽管在许多情况下2D材料与其大容量相比具有增强的性质,但是有不足的方法可以控制纳米级结构,使2D材料的大规模可重复性差异很大,从而阻碍了它们进入我们的日常生活。2
烷基卤化物,具有卤素原子(氟,氯,溴或诱导)的化合物粘结到饱和碳原子,由于其多样性的反应性和广泛的应用,在有机化学中保持中心位置。这些化合物是有机合成中的至关重要的构件,为复杂分子的构建提供了多功能官能团。烷基卤化物的独特特性,例如它们的亲电性和离开群体的能力,使它们在各种化学转化中都可吸引。从历史上看,烷基卤化物已经通过传统方法(例如烷基化的卤代化或醇与卤代的取代反应)合成。然而,合成方法的最新进展导致开发了更高效,更可持续的途径,用于烷基卤化物制备,绿色化学原理,包括催化过程,无溶剂疾病和无溶剂经济反应,已成为烷基合成烷基烷基卤化物和微小的废物的整体成分。烷基卤化物的反应性包括各种反应,包括亲核取代,消除和自由基过程。了解这些反应的机械途径对于控制选择性和实现有机合成期望结果至关重要。最近的研究阐明了复杂的反应机制和新的新变化,扩大了烷基卤化物的合成效用。除了其合成效用之外,烷基卤化物还发现了在药物化学,材料科学和农业化学等不同领域的应用。将其掺入药物化合物中赋予了理想的特性,例如增加亲脂性或代谢稳定性。在材料科学中,烷基卤化物是合成聚合物,表面活性剂和具有量身定制特性的功能材料的前体。本综述旨在全面概述烷基卤化物的化学,涵盖其合成,反应性和应用。通过探索合成方法,机理见解和新兴应用方面的最新进展,本综述旨在阐明烷基卤化物在当代有机化学中的核心作用,并激发该动态领域中进一步的探索和创新。烷基卤化物是一类由与饱和碳原子结合的卤素原子组成的有机化合物,代表有机合成中的基本构建块,并在各个领域具有广泛的应用。烷基卤化物的化学因素由于其多种反应性模式以及其在药物化学,材料科学和工业过程中的重要性而引起了重大兴趣。合成的是,通过多种方法制备烷基卤化物,包括烷基的卤素化,醇与卤素的取代反应以及向烷烃添加卤素。合成方法的最新进展已引入了更可持续和有效的途径,以实现其合成,通常采用过渡金属催化和创新反应设计。绿色化学原理越来越多地整合到烷基卤化物的合成中,以最大程度地减少废物产生和环境影响。
上个世纪的快速技术进步导致温度传感领域中带来了新的Challenges。准确,遥远,无接触式和实时微观和纳米级的温度映射在细胞成像,微流体和纳米流体以及集成电路设计中的需求巨大,[1-11]中,这些严格的要求需要使用光学方法。这些通常分为三个主要的猫:红外(IR)隆期,IR直接检测和远程光学/荧光热量表。,由于其出色的热分辨率(10-1 K),其中最常见的是IR射量方法,例如在商业设备中发现的方法。然而,要检测到的黑体辐射的长红外波长导致室内温度(RT)对象的固有低空间分辨率为≈10µm,这是由于abbe差异的限制所期望的。对IR光的检测也遭受了由于吸收而缺乏与广泛的光学成分相兼容。[12,13]或者,在可见区域中运行的远程光学方法,例如,通过测量荧光强度或衰减时间,[14]达到了很高的热分辨率,并且可能由于较低的衍射极限而有可能提供较高的空间分辨率,并且在常见媒体(例如水和玻璃)中透明度。[13,15,16]基于强度的量化,由于光散射(样品拓扑,磷光粒子形态等)而容易出现错误。),不均匀的磷光器分布,非态磷光物种形成或批处理变异性等。虽然基于荧光时代的热量成像是继承了许多此类局限性,但其部署通常会因适合特定应用的特定要求的磷剂的可用性而受到阻碍。我们的本文提出的研究涉及在RT周围温度下在温度下进行高空间和热分辨率热图形的新型热液少量探索。在这种情况下,我们发现已知的热燃料载体,即有机染料,聚合物,量子点,稀有掺杂的金属氧化物,[17-25]面临限制,例如材料制造或薄膜沉积,耐用性和健壮性的耐用性和稳健性的耐磨性,或者不适合特定范围的特定方法或常见的特定方法。
带有光波导的分子发光材料在发光二极管,传感器和逻辑门中具有广泛的应用前景。但是,大多数传统的光学波导系统都是基于脆性分子晶体,该晶体限制了在不同的应用情况下的柔性设备的制造,运输,存储和适应。迄今为止,在同一固态系统中具有较高柔韧性,新型光学波导和多端口色调发射的光功能材料的设计和合成仍然是一个开放的挑战。在这里,我们已经构建了新型的零维有机金属卤化物(Au-4-二甲基氨基吡啶[DMAP]和DMAP),对于光学波导而言,弹性很小,损失系数很少。对分子间相互作用的理论计算表明,2分子晶体材料的高弹性是原始的,它是从其人字形结构和滑移平面的。基于2个晶体的一维柔性微脚架和Mn-Dmap的2维微板,具有多色和空间分辨光学波导的异质界面。杂合的形成机理是基于表面选择性生长,因为接触晶体平面之间的低晶格不匹配比。因此,这项工作描述了具有高灵活性和光学波导的基于金属壁的晶体异质结的首次尝试,从而扩展了用于智能光学设备(例如逻辑门和多路复用器)的传统发光材料的前景。
摘要:具有较高载流子迁移率的二维半导体的发现和设计对于高速电子和光电设备至关重要。在此基于高通量计算的基础上,我们确定了一组半导体,硫磺halide halides irsx'(x'= f,cl,br,i),具有较高的载流量(〜10 3 cm 2 v-1 s-1)和高效的光收获(〜34%)。此外,这些材料表现出各向异性的平面运输行为,这是通过铁弹性开关进行切换的,从而提供了单层IRSX的巨大潜力,可用于在方向控制的高速电子和Optoelectronic设备中应用。高载体迁移率和各向异性转运是源自在矩形晶格中的传导带最小值(CBM)和价带最大值(VBM)的IR原子3D轨道的各向异性分布。ML IRSX's(X'= F,Cl,Br)显示出良好的动力学和热稳定性,并且根据相图计算在热力学上稳定,因此未来值得实验实现。
适用性,出色的化学和物理稳定性以及有利的晶体生长习惯。金属卤化物被高度视为重要的光学功能材料,因为它们的优势是易于制备,丰富的配位环境,宽透明范围,高激光诱导的损伤阈值,并且在发光的边界eLS中应用,太阳能电池,太阳能电池,激光频率转换等等。22 - 29中,二元金属卤化物由于其简单的组成和成本效果而被广泛使用:KBR通常用作傅立叶变换红外(FT-IR)光谱的背景材料,因为其广泛的透明范围超过25 m m; 30 CAF 2和BAF 2具有出色的机械性能,热稳定性和辐射抗性,以及从深紫外线(UV)到IR区域的高透明度,这些透明度可用于光学棱镜,透镜,楔形板,隔膜,隔膜和其他重要的光学组件。31由于上述原因,二元金属卤化物的出色物理和化学特性与我们对下一代双重晶体材料的期望一致,这使得它们被视为具有巨大潜力的双折射材料国库。另一方面,金属卤化物显示出各种的配位模式,包括线性,三角形锥体,四面体和方形锥体结构,这是有希望的机会,可以识别具有相当性的构建块的隔离性各向异性各向异性材料。在基于Hg的卤化物中,除了传统的[HGX 4](X =卤素)四面体外,还存在很少的[X - HG - X]或[X - HG - HG - HG - HG - X]线性单位。25通过比较和筛选,由于其丰富的散装和广泛的透明范围,基于二进制的基于二进制汞(基于HG)的卤化物已成为我们的焦点。32 - 36 in
首次由FrankWürthner领导的团队现在创建了一个具有缺陷的模型系统,该系统使Halides氟化物,氯化物和溴化物可以通过,但不是碘化物。这是在稳定的双层层中实现的,该双层由两个包围空腔的纳米仪组成。穿透的卤化离子在此腔中结合,以便可以测量进入所需的时间。