在量子多体物理学中,基态上方谱隙的存在对基态关联和纠缠特性具有重大影响 [1, 2, 3, 4]。谱隙的闭合也与拓扑量子相变的发生密切相关,因为量子相的现代定义依赖于通过 Hastings 的准绝热演化概念存在的带隙汉密尔顿量路径 [5, 6, 7]。在汉密尔顿量的各种“局部”扰动下谱隙的稳定性是一个活跃的研究领域 [8, 9, 10, 11, 12],为了利用这些稳定性结果,拥有广泛的带隙汉密尔顿量网络用于进一步的稳定性分析当然是有益的。一般来说,有关谱隙的问题是物理学中许多最具挑战性的未决问题的核心。两个例子是霍尔丹的猜想,即反铁磁海森堡链的自旋值为整数时存在谱隙[13,14],以及杨-米尔斯质量间隙,这是一个千年难题。有关谱隙相关性的更多背景信息,请参阅[15,7]。鉴于谱隙的存在具有很强的物理意义,人们对确定严格推导谱隙的数学技术有着浓厚的兴趣。已经发现,除极少数例外,只有特殊的无挫折哈密顿量才适合严格推导。
人们齐心协力,设计出实现此类非互易散射装置的方法,而无需使用磁性材料或磁场,而是使用外部驱动(即时间调制)。有几篇优秀的评论讨论了经典系统中的这些方法(例如见[1、2])。与此同时,人们对理解系统的独特性质的理论兴趣也日益浓厚,这些系统的内部动力学由有效非厄米哈密顿量所支配,这些哈密顿量编码了非互易相互作用。典型的例子包括非厄米晶格模型,其中存在不对称性,例如从左到右跳跃的振幅与从右到左跳跃的振幅[3]。这样的系统表现出许多不寻常的性质,例如非厄米趋肤效应,其中边界条件从周期性变为开放会完全改变哈密顿量的谱,并局部化所有特征向量[4-6]。它们还可以表现出独特的拓扑能带结构 [7,8],甚至可以产生新颖的相变物理 [9]。该领域的大多数工作都假设定向相互作用的存在作为建立模型的起点,而不必担心微观机制。在量子领域,这可能会有问题,因为它通常相当于对开放量子系统的不完整描述(其中包括广义阻尼效应,而不考虑随之而来的相应量子涨落)[10]。在这些笔记中,我们(希望)以完全符合量子力学的方式,通过外部驱动在微观上实现非互易相互作用的方法提供了教学介绍。使用一个极其简单的三点玻色子环模型,我们明确展示了非互易散射(隔离器或循环器所需要的)如何直接与环内的非互易传播相关联,如有效非厄米哈密顿量所述。我们以一种包含所有相关量子噪声效应的方式来做到这一点。这个简单的例子强调了一个普遍原则:实现非互易相互作用既需要打破时间反转对称性(因为存在非平凡的合成规范场),也需要耗散。然后,我们使用这个玩具模型来推导一个量子主方程,该方程编码环内的非互易隧穿。这明确展示了非互易性是如何通过平衡相干哈密顿相互作用与相应类型的耗散相互作用(由非局部耦合到系统自由度的耗散库介导)而出现的。通过这个例子,我们表明这个量子主方程的基本结构可用于使两个系统之间的任何起始哈密顿相互作用完全非互易。我们将其与级联量子系统理论(其中非互易相互作用通过耦合到外部单向波导然后积分出来产生)和测量加前馈协议的量子描述(由于信息的单向流动,它们本质上是非互易的)联系起来。因此,我们的工作为参考文献 [ 11 ] 和 [ 12 ] 中介绍的产生非互易量子相互作用的基本方法提供了教学介绍。它以多种方式补充了那里的分析(例如,通过讨论与非厄米汉密尔顿量的具体联系,并通过评论非厄米相互作用产生纠缠的能力)。
物理系统的热平衡性质可以用吉布斯态来描述。因此,了解何时可以轻松描述此类状态非常重要。特别是,如果远距离区域之间的相关性很小,情况就是如此。在这项工作中,我们考虑在任何温度下具有局部、有限范围、平移不变相互作用的一维量子自旋系统。在这种情况下,我们表明吉布斯态满足相关性的均匀指数衰减,而且,两个区域之间的互信息随其距离呈指数衰减,与温度无关。为了证明后者,我们表明,对于在任何温度下具有局部、有限范围相互作用的一维量子自旋系统,无限链热态相关性的指数衰减、指数均匀聚类和互信息的指数衰减都是等价的。特别是,Araki 的开创性结果表明这三个条件在平移不变的情况下成立。我们使用的方法基于 Belavkin-Staszewski 相对熵和 Araki 开发的技术。此外,我们发现,我们所考虑的系统的吉布斯状态超指数地接近饱和 Belavkin-Staszewski 相对熵的数据处理不等式。
将位上的函数映射到作用于量子位上的汉密尔顿量在量子计算中有许多应用。特别是,表示布尔函数的汉密尔顿量对于将量子退火或量子近似优化算法应用于组合优化问题是必不可少的。我们展示了这些函数如何自然地用汉密尔顿量来表示,这些汉密尔顿量是泡利 Z 算子(伊辛自旋算子)的和,和的项对应于函数的傅里叶展开。对于许多由紧凑描述给出的布尔函数类,例如给出可满足性问题实例的合取范式布尔公式,计算其汉密尔顿量表示是 #P 难,即与计算其满足分配的数量一样难。另一方面,构造表示实函数的汉密尔顿量(例如每个作用于固定数量的位的局部布尔子句之和)通常不存在这种困难,这在约束满足问题中很常见。我们展示了组合规则,通过将表示更简单子句的汉密尔顿算子组合为构建块,明确构造表示各种布尔函数和实函数的汉密尔顿算子,这些规则特别适合直接实现为经典软件。我们进一步将结果应用于受控酉算子的构造,以及在辅助量子比特寄存器中计算函数值的算子的特殊情况。最后,我们概述了我们的结果在量子优化算法中的几个其他应用和扩展。这项工作的目标是提供一个量子优化设计工具包,专家和从业者都可以使用它来构建和分析新的量子算法,同时为文献中出现的各种构造提供一个统一的框架。
相互作用的量子汉密尔顿量是量子计算的基础。时间无关的量子汉密尔顿量的基于数据的断层扫描已经实现,但一个开放的挑战是使用从一小部分自旋局部获取的时间序列测量来确定时间相关的量子汉密尔顿量的结构。物理上,自旋系统在时间相关驱动或扰动下的动态演化由海森堡运动方程描述。受这一基本事实的启发,我们阐明了一个物理增强的机器学习框架,其核心是海森堡神经网络。具体来说,我们根据基于海森堡方程的一些物理驱动损失函数开发了一种深度学习算法,该算法“强制”神经网络遵循自旋变量的量子演化。我们证明,从局部测量中,不仅可以恢复局部汉密尔顿量,而且还可以忠实地重建反映整个系统相互作用结构的汉密尔顿量。我们在各种结构的自旋系统上测试了我们的海森堡神经机。在仅从一次自旋进行测量的极端情况下,实现的断层扫描保真度值可以达到约 90%。开发的机器学习框架适用于任何时间相关系统,其量子动力学演化受海森堡运动方程控制。
路径积分量子蒙特卡洛(PIMC)是一种通过使用马尔可夫链蒙特卡洛(Monte Carlo)从经典的吉布斯分布中抽样的量子量子自旋系统的热平衡性能的方法。PIMC方法已被广泛用于研究材料物理和模拟量子退火,但是这些成功的应用很少伴随着正式的证据,即PIMC依据的马尔可夫链迅速汇聚到所需的平衡分布。在这项工作中,我们分析了1D stoquastic hamiltonians的PIMC的混合时间,包括远程代数衰减相互作用以及无序的XY旋转链,以及与最近的静脉相互作用。通过将收敛时间与平衡分布联系起来,我们严格地证明使用PIMC在近似温度下对这些模型的可观察到的分区函数和期望为近相数,这些模型与Qubits的数量最大程度地对数扩展。混合时间分析基于应用于单位大都会马尔可夫链的规范路径方法,用于与与量子汉密尔顿量子相互作用相关的2D经典自旋模量的吉布斯分布。由于系统具有强烈的非偶然耦合,随着系统大小而生长,因此它不会属于已知2D经典自旋模型迅速混合的已知情况。
我们提出了元变分量子本征求解器 (VQE),这是一种能够学习参数化汉密尔顿量的基态能量分布的算法。如果使用几个数据点训练元 VQE,它将提供初始电路参数化,可用于计算特定信任区域内汉密尔顿量的任何参数化的基态能量。我们使用 XXZ 自旋链、电子 H 4 汉密尔顿量和单传输量子模拟测试该算法。在所有情况下,元 VQE 都能够学习能量函数的形状,在某些情况下,与单个 VQE 优化相比,它可以提高准确性。元 VQE 算法在优化数量方面提高了参数化汉密尔顿量的效率,并为单个优化的量子电路参数提供了良好的起点。所提出的算法可以很容易地与变分算法领域的其他改进相结合,以缩短当前最先进技术与具有量子优势的应用之间的距离。
在研究各种量子系统时,对各种汉密尔顿量和谱密度的开放量子动力学进行模拟是普遍存在的。在量子计算机上,模拟一个 N 维量子系统只需要 log 2 N 个量子比特,因此与传统方法相比,在量子计算机中进行模拟可以大大降低计算复杂度。最近,提出了一种用于研究光合作用光收集的量子模拟方法 [npj Quantum Inf. 4, 52 (2018)]。在本文中,我们应用该方法模拟各种光合作用系统的开放量子动力学。我们表明,对于 Drude-Lorentz 谱密度,供体和受体团簇内分别具有强耦合的二聚化几何结构表现出显著提高的效率。我们还证明,当供体和受体团簇之间的能隙与谱密度的最优值匹配时,总能量传递可以得到优化。我们还研究了不同类型的浴(例如欧姆、亚欧姆和超欧姆谱密度)的影响。目前的研究表明,所提出的方法对于模拟光合作用系统的精确量子动力学具有普遍性。
ℓ H ℓ 是任意二阶量子化费米子哈密顿量的乔丹-维格纳变换。Select ( H ) 是几种量子算法的主要子程序之一,包括最先进的哈密顿量模拟技术。如果二阶量子化哈密顿量中的每一项最多涉及 k 个自旋轨道,且 k 是与自旋轨道总数 n 无关的常数(文献中考虑的大多数量子化学和凝聚态模型都是如此,其中 k 通常为 2 或 4 ),则我们对 Select ( H ) 的实现不需要辅助量子位,并且使用 O ( n ) Cliufford+ T 门,其中 Cliufford 门应用于 O (log 2 n ) 层,T 门应用于 O (log n ) 层。与以前的工作相比,这实现了 Clifford 和 T 深度的大幅提升,同时保持了线性门数,并将辅助门数减少到零。
已经确定局部晶格自旋汉密尔顿量可用于通用绝热量子计算。然而,这些证明中使用的双局部模型汉密尔顿量是通用的,因此不限制自旋之间所需的相互作用类型。为了解决这一问题,本文提供了两个简单的模型汉密尔顿量,它们对于致力于实现通用绝热量子计算机的实验者来说具有实际意义。所提出的模型汉密尔顿量是已知的最简单的量子 Merlin-Arthur 完备 QMA 完备双局部汉密尔顿量。使用一系列技术实现的具有单局部横向场的双局部 Ising 模型可能是最简单的量子自旋模型,但不太可能适用于绝热量子计算。我们证明,通过添加可调的双局部横向 xx 耦合,该模型可以实现通用和 QMA 完备。我们还展示了仅具有单局部 z 和 x 场以及双局部 zx 相互作用的自旋模型的通用性和 QMA 完备性。