• 我们展示了 QPCP 的一个先决条件:一个显式局部哈密顿量,其低能态都需要 ω (log n ) T 门,也就是说,它们非常不稳定。事实上,我们展示了一个更强的结果,即低能态需要 Ω( n ) T 门,而这不一定是 QPCP 所暗示的。
物理系统的热平衡性质可以用吉布斯态来描述。因此,了解何时可以轻松描述此类状态非常重要。特别是,如果远距离区域之间的相关性很小,情况就是如此。在这项工作中,我们考虑在任何温度下具有局部、有限范围、平移不变相互作用的一维量子自旋系统。在这种情况下,我们表明吉布斯态满足相关性的均匀指数衰减,而且,两个区域之间的互信息随其距离呈指数衰减,与温度无关。为了证明后者,我们表明,对于在任何温度下具有局部、有限范围相互作用的一维量子自旋系统,无限链热态相关性的指数衰减、指数均匀聚类和互信息的指数衰减都是等价的。特别是,Araki 的开创性结果表明这三个条件在平移不变的情况下成立。我们使用的方法基于 Belavkin-Staszewski 相对熵和 Araki 开发的技术。此外,我们发现,我们所考虑的系统的吉布斯状态超指数地接近饱和 Belavkin-Staszewski 相对熵的数据处理不等式。
我们提出了元变分量子本征求解器 (VQE),这是一种能够学习参数化汉密尔顿量的基态能量分布的算法。如果使用几个数据点训练元 VQE,它将提供初始电路参数化,可用于计算特定信任区域内汉密尔顿量的任何参数化的基态能量。我们使用 XXZ 自旋链、电子 H 4 汉密尔顿量和单传输量子模拟测试该算法。在所有情况下,元 VQE 都能够学习能量函数的形状,在某些情况下,与单个 VQE 优化相比,它可以提高准确性。元 VQE 算法在优化数量方面提高了参数化汉密尔顿量的效率,并为单个优化的量子电路参数提供了良好的起点。所提出的算法可以很容易地与变分算法领域的其他改进相结合,以缩短当前最先进技术与具有量子优势的应用之间的距离。
在研究各种量子系统时,对各种汉密尔顿量和谱密度的开放量子动力学进行模拟是普遍存在的。在量子计算机上,模拟一个 N 维量子系统只需要 log 2 N 个量子比特,因此与传统方法相比,在量子计算机中进行模拟可以大大降低计算复杂度。最近,提出了一种用于研究光合作用光收集的量子模拟方法 [npj Quantum Inf. 4, 52 (2018)]。在本文中,我们应用该方法模拟各种光合作用系统的开放量子动力学。我们表明,对于 Drude-Lorentz 谱密度,供体和受体团簇内分别具有强耦合的二聚化几何结构表现出显著提高的效率。我们还证明,当供体和受体团簇之间的能隙与谱密度的最优值匹配时,总能量传递可以得到优化。我们还研究了不同类型的浴(例如欧姆、亚欧姆和超欧姆谱密度)的影响。目前的研究表明,所提出的方法对于模拟光合作用系统的精确量子动力学具有普遍性。
路径积分量子蒙特卡洛(PIMC)是一种通过使用马尔可夫链蒙特卡洛(Monte Carlo)从经典的吉布斯分布中抽样的量子量子自旋系统的热平衡性能的方法。PIMC方法已被广泛用于研究材料物理和模拟量子退火,但是这些成功的应用很少伴随着正式的证据,即PIMC依据的马尔可夫链迅速汇聚到所需的平衡分布。在这项工作中,我们分析了1D stoquastic hamiltonians的PIMC的混合时间,包括远程代数衰减相互作用以及无序的XY旋转链,以及与最近的静脉相互作用。通过将收敛时间与平衡分布联系起来,我们严格地证明使用PIMC在近似温度下对这些模型的可观察到的分区函数和期望为近相数,这些模型与Qubits的数量最大程度地对数扩展。混合时间分析基于应用于单位大都会马尔可夫链的规范路径方法,用于与与量子汉密尔顿量子相互作用相关的2D经典自旋模量的吉布斯分布。由于系统具有强烈的非偶然耦合,随着系统大小而生长,因此它不会属于已知2D经典自旋模型迅速混合的已知情况。
最近有研究表明,从吉布斯态(对应于系统处于热平衡的状态)采样是一项量子计算机有望实现超多项式加速的任务,相比经典计算机,前提是哈密顿量的局部性随着系统规模的增加而增加 [ BCL24 ]。我们扩展了这些结果,通过展示经典的采样难度并证明可以使用量子计算机有效制备此类吉布斯态,表明这种量子优势仍然适用于恒温下具有 𝑂 ( 1 ) 局部相互作用的哈密顿量的吉布斯态。特别是,我们表明即使对于 3D 晶格上的 5 局部哈密顿量,采样难度也能保持。我们还表明,当我们只能进行不完美测量时,采样难度是稳健的。
我们提出了一种新的量子绝热定理,该定理允许人们严格限制多种系统的绝热时间尺度,包括最初由最初无界的汉密尔顿人描述的系统,这些系统被截止使有限量化。我们的界限适合超导电路的量子近似值,并提出了一个足够的条件,可在N量子位的电路模型的2 n维Qubit子空间中保留。这种绝热定理的新颖性是,与以前的严格结果不同,它不包含2 n作为绝热时间尺度的一个因素,并且它允许人们获得二十岁时间尺度的表达,而与吉尔伯特巡回赛的少量二维希尔伯特空间无关。作为一种应用,我们提出了该时间尺度对超导频率Qubit的电路参数的明确依赖性,并证明从Qubit子空间中泄漏出来是不可避免的,因为隧道屏障在量子末期末端升高。我们还讨论了获得2 N×2 N有效哈密顿量的一种方法,该方法最能近似于缓慢变化的电路控制参数引起的真实动力学。本文是主题问题的一部分“量子退火和计算:挑战和观点”。
实现鲁棒的量子纠错 (QEC) 对于发挥量子技术的潜力至关重要。我们引入了一个框架,该框架可以采用任何经典代码并明确构建相应的 QEC 代码。我们的框架可以看出是 CSS 代码的推广,并且超越了稳定器形式主义(图 1)。一个具体的优势是,经典代码的理想属性会自动纳入到生成的量子代码的设计中。我们通过各种例子来具体化该理论,其中一些例子优于以前最好的构造。然后,我们引入一个局部量子自旋链哈密顿量,我们对其基本空间进行了完全解析表征。我们利用我们的框架来证明基本空间包含具有线性距离的显式量子代码。这避开了 Bravyi-Terhal 不可行定理。
人们齐心协力,设计出实现此类非互易散射装置的方法,而无需使用磁性材料或磁场,而是使用外部驱动(即时间调制)。有几篇优秀的评论讨论了经典系统中的这些方法(例如见[1、2])。与此同时,人们对理解系统的独特性质的理论兴趣也日益浓厚,这些系统的内部动力学由有效非厄米哈密顿量所支配,这些哈密顿量编码了非互易相互作用。典型的例子包括非厄米晶格模型,其中存在不对称性,例如从左到右跳跃的振幅与从右到左跳跃的振幅[3]。这样的系统表现出许多不寻常的性质,例如非厄米趋肤效应,其中边界条件从周期性变为开放会完全改变哈密顿量的谱,并局部化所有特征向量[4-6]。它们还可以表现出独特的拓扑能带结构 [7,8],甚至可以产生新颖的相变物理 [9]。该领域的大多数工作都假设定向相互作用的存在作为建立模型的起点,而不必担心微观机制。在量子领域,这可能会有问题,因为它通常相当于对开放量子系统的不完整描述(其中包括广义阻尼效应,而不考虑随之而来的相应量子涨落)[10]。在这些笔记中,我们(希望)以完全符合量子力学的方式,通过外部驱动在微观上实现非互易相互作用的方法提供了教学介绍。使用一个极其简单的三点玻色子环模型,我们明确展示了非互易散射(隔离器或循环器所需要的)如何直接与环内的非互易传播相关联,如有效非厄米哈密顿量所述。我们以一种包含所有相关量子噪声效应的方式来做到这一点。这个简单的例子强调了一个普遍原则:实现非互易相互作用既需要打破时间反转对称性(因为存在非平凡的合成规范场),也需要耗散。然后,我们使用这个玩具模型来推导一个量子主方程,该方程编码环内的非互易隧穿。这明确展示了非互易性是如何通过平衡相干哈密顿相互作用与相应类型的耗散相互作用(由非局部耦合到系统自由度的耗散库介导)而出现的。通过这个例子,我们表明这个量子主方程的基本结构可用于使两个系统之间的任何起始哈密顿相互作用完全非互易。我们将其与级联量子系统理论(其中非互易相互作用通过耦合到外部单向波导然后积分出来产生)和测量加前馈协议的量子描述(由于信息的单向流动,它们本质上是非互易的)联系起来。因此,我们的工作为参考文献 [ 11 ] 和 [ 12 ] 中介绍的产生非互易量子相互作用的基本方法提供了教学介绍。它以多种方式补充了那里的分析(例如,通过讨论与非厄米汉密尔顿量的具体联系,并通过评论非厄米相互作用产生纠缠的能力)。
我们引入了一个框架,用于构建从任何经典错误纠正代码纠正代码的量子错误。这包括CSS代码[CS96,Ste96b],并且超越了稳定剂形式[GOT96],以允许量子代码由不一定是线性或自我实施的经典代码构造(图1)。我们给出了一种算法,该算法明确构建具有线性距离和恒定速率的量子代码,该代码与经典代码具有线性距离和速率。作为小型代码的插图,我们从Hamming的[7,4,3]代码[MS77]中获得了Steane的7-量子代码[Ste96a],并从其他长度4和6。是由量子LDPC代码[BBA + 15]的动机,并使用物理来保护量子信息,我们引入了一种新的2局部挫败感自由量子旋转链汉密尔顿式自旋空间,我们在分析上完全表征了地面空间。通过将经典代码字映射到地面空间的基础状态,我们利用我们的框架证明地面空间包含具有线性距离的显式量子代码。此侧键是Bravyi-terhal no-Go定理[BT09],因为我们的工作允许超出稳定器和/或线性代码以外的更通用的量子代码。我们不愿将其称为具有线性距离的子空间量子LDPC代码的示例。