•Kitao H,Takata M. Fanconi贫血:DNA Damagerespess中的一种疾病。int j hematol。2011年4月; 93(4):417-424。 doi:10.1007/s12185-011-0777-z.epub 2011年2月18日。引用于PubMed(https://pubmed.ncbi.nlm.nih.gov/21 331524)•Mathew CG。fanconi贫血基因和对癌症的敏感性。癌基因。2006年7月25日; 25(43):5875-84。 doi:10.1038/sj.onc.1209878。引用PubMed(http s://pubmed.ncbi.nlm.nih.gov/16998502)•Mehta PA,Ebens C. Fanconi贫血。2002年2月14日[更新2021年6月3日]。in:Adammp,Feldman J,Mirzaa GM,Pagon RA,Wallace SE,Amemiya A,编辑。genereviews(r)[Internet]。西雅图(WA):西雅图华盛顿大学; 1993- 2025。 可从http://www.ncbi.nlm.nih.gov/books/nbk1401/获得PubMed引用(https://wwwww.ncbi.nlm.nih.gov/poubmed/20301575)•Taniguchi T,Daniguchi T,d,d,d' ad&x27; and andrea; fanconi贫血的分子发病机理:近代人。 血。 2006 Jun 1; 107(11):4223-33。 doi:10.1182/Blood-2005-10-4240.EPUB 2006 2月21日。 PubMed引用(https://pubmed.ncbi.nlm.nih.gov/1649 3006)西雅图(WA):西雅图华盛顿大学; 1993- 2025。可从http://www.ncbi.nlm.nih.gov/books/nbk1401/获得PubMed引用(https://wwwww.ncbi.nlm.nih.gov/poubmed/20301575)•Taniguchi T,Daniguchi T,d,d,d' ad&x27; and andrea;fanconi贫血的分子发病机理:近代人。血。2006 Jun 1; 107(11):4223-33。 doi:10.1182/Blood-2005-10-4240.EPUB 2006 2月21日。 PubMed引用(https://pubmed.ncbi.nlm.nih.gov/1649 3006)2006 Jun 1; 107(11):4223-33。 doi:10.1182/Blood-2005-10-4240.EPUB 2006 2月21日。PubMed引用(https://pubmed.ncbi.nlm.nih.gov/1649 3006)
1。rd和al。呼吸剧加热。2021; 43(3):341-348。 doi:1016/j.htct.2020.06.006 2。他施舍。剧型。2020; 99:1505-1 doi:10.10.1007/s0027-020-0404052-Z 3。in:Statsearch出版; 2023。2023年7月31日访问。m和al。J Manag Sec Pharm2020; 26(12)(补充B):S8-S15。招募米切尔。SM Clin Med Oncol2017; 1(1):1001。 6。 in:Statsearch 出版; 2023。 2023年7月17日访问。 JL Dotson,Lebowicz Y. in:Statsearch 出版; 2023。 2022年7月18日访问。 n等。 J Clin Med 2021; 10:1026。 doi:10.390/jcm10051026 9。 Brodsky RA。 血液 2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。 miyata t和al。 n Engel J Med。 1994; 330:249-2 11。 Bessler M和Al。 J. 1994; 13(1):110-1 12。 miyata t和al。 科学。 1993; 259:1318-1 13。 JF和Al。 血。 1992; 79:1400-1403。2017; 1(1):1001。6。in:Statsearch出版; 2023。2023年7月17日访问。JL Dotson,Lebowicz Y.in:Statsearch出版; 2023。2022年7月18日访问。n等。J Clin Med 2021; 10:1026。 doi:10.390/jcm10051026 9。 Brodsky RA。 血液 2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。 miyata t和al。 n Engel J Med。 1994; 330:249-2 11。 Bessler M和Al。 J. 1994; 13(1):110-1 12。 miyata t和al。 科学。 1993; 259:1318-1 13。 JF和Al。 血。 1992; 79:1400-1403。J Clin Med2021; 10:1026。 doi:10.390/jcm10051026 9。Brodsky RA。 血液 2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。 miyata t和al。 n Engel J Med。 1994; 330:249-2 11。 Bessler M和Al。 J. 1994; 13(1):110-1 12。 miyata t和al。 科学。 1993; 259:1318-1 13。 JF和Al。 血。 1992; 79:1400-1403。Brodsky RA。血液2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。 miyata t和al。 n Engel J Med。 1994; 330:249-2 11。 Bessler M和Al。 J. 1994; 13(1):110-1 12。 miyata t和al。 科学。 1993; 259:1318-1 13。 JF和Al。 血。 1992; 79:1400-1403。2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。miyata t和al。n Engel J Med。1994; 330:249-211。Bessler M和Al。J.1994; 13(1):110-112。miyata t和al。科学。1993; 259:1318-113。JF和Al。血。1992; 79:1400-1403。1992; 79:1400-1403。14。J和Al。单元格。1993; 73-711。 15。 Wilcox La和Al。 血液 1991; 78(3):820-8 16。 Medof Me and Al。 Proc Natl Sci Acad A. 1985; 82(9):2980-2 17。 MH等人。 J Clin Invest。 1989; 84:1387-1394。 18。 Davies A和Al。 J扩展。 1989; 170:637-6 19。 m和al。 J Spec Pharm Manag。 2020; 26(12)(补充B):S3-S8 20。 rj和al。 接触Oncol Haematol 2021; 17:84-89。 doi:10.17925/ohr.2021.2.2.84 21。 Parker CJ。 血液学和SOC雌醇教育 2016; 2016(1):208-2 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。1993; 73-711。15。Wilcox La和Al。 血液 1991; 78(3):820-8 16。 Medof Me and Al。 Proc Natl Sci Acad A. 1985; 82(9):2980-2 17。 MH等人。 J Clin Invest。 1989; 84:1387-1394。 18。 Davies A和Al。 J扩展。 1989; 170:637-6 19。 m和al。 J Spec Pharm Manag。 2020; 26(12)(补充B):S3-S8 20。 rj和al。 接触Oncol Haematol 2021; 17:84-89。 doi:10.17925/ohr.2021.2.2.84 21。 Parker CJ。 血液学和SOC雌醇教育 2016; 2016(1):208-2 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。Wilcox La和Al。血液1991; 78(3):820-816。Medof Me and Al。Proc Natl Sci Acad A.1985; 82(9):2980-217。MH等人。J Clin Invest。1989; 84:1387-1394。 18。 Davies A和Al。 J扩展。 1989; 170:637-6 19。 m和al。 J Spec Pharm Manag。 2020; 26(12)(补充B):S3-S8 20。 rj和al。 接触Oncol Haematol 2021; 17:84-89。 doi:10.17925/ohr.2021.2.2.84 21。 Parker CJ。 血液学和SOC雌醇教育 2016; 2016(1):208-2 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。1989; 84:1387-1394。18。Davies A和Al。 J扩展。 1989; 170:637-6 19。 m和al。 J Spec Pharm Manag。 2020; 26(12)(补充B):S3-S8 20。 rj和al。 接触Oncol Haematol 2021; 17:84-89。 doi:10.17925/ohr.2021.2.2.84 21。 Parker CJ。 血液学和SOC雌醇教育 2016; 2016(1):208-2 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。Davies A和Al。J扩展。1989; 170:637-619。m和al。J Spec Pharm Manag。2020; 26(12)(补充B):S3-S820。rj和al。接触Oncol Haematol2021; 17:84-89。 doi:10.17925/ohr.2021.2.2.84 21。Parker CJ。 血液学和SOC雌醇教育 2016; 2016(1):208-2 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。Parker CJ。血液学和SOC雌醇教育2016; 2016(1):208-222。illingworth a和al。细胞细胞t。2018; 94-66。 doi:10.1002/cycle.b.21609 23。Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。Southernland Dr and Al。细胞细胞t。2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。肥胖的B和Al。白血病。2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。dingli d和al。剧型。2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。maninal p al。印度J仅呼吸蛇出血。2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。Parker C和Al。血。2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。res螺栓。2015; 136(2):274-281。2015; 136(2):274-281。29。Borowitz MJ等。细胞仪B临床细胞症。2010; 78(4):211-230。 doi:10.1002 /cyto.B.20525 30。< /div>Arup实验室。2024年6月5日访问。https://ltd.aruplab.com/tests/pub/2005006 31。生物。2024年6月5日访问。https://www.bioreference.com/physicians/resources/test-directory/?tc = 5564 32。克利夫兰诊所实验室。2024年6月5日访问。https://clevelandcliniclabs.com/high-sensitivity-flow-cytometry-for-paroxysmal-nocturnal-nocturnal-hemoglobinuria/33。CSI实验室。2024年6月5日访问。https://www.csilaboratories.com/flow/pnh-high-sensitivity/34。Dahl-Chase诊断服务。2024年6月5日访问。http:// dahlchase。host4kb.com/article/aa-00231/15/ 35。Dahl-Chase诊断服务。2024年6月5日。hemagogenix。2024年6月5日访问。https://hematogenix.com/technologies/flow-cytometry 37。告知诊断。2024年6月5日访问。https://www.informdx.com/wp- content/uploads/mls-20-0100.4-client-resource-resource-guide.pdf 38。labcorp。2024年6月5日访问。https://oncology.labcorp.com/tests/zzio-295/pnh--评估39。Mayo诊所实验室。 2024年6月5日访问。https://www.mayocliniclabs.com/test-catalog/overview/62139#specimen 40。 Mayo诊所实验室。 2024年6月5日访问。https://www.mayocliniclabs.com/test-catalog/overview/62139#fees-and-codes 41。Mayo诊所实验室。2024年6月5日访问。https://www.mayocliniclabs.com/test-catalog/overview/62139#specimen 40。Mayo诊所实验室。 2024年6月5日访问。https://www.mayocliniclabs.com/test-catalog/overview/62139#fees-and-codes 41。Mayo诊所实验室。2024年6月5日访问。https://www.mayocliniclabs.com/test-catalog/overview/62139#fees-and-codes 41。密歇根州医学实验室。2024年6月5日访问。https://mlabs.umich.edu/tests/pnh-marker-panel 42。分子病理实验室网络。2024年6月5日访问。https://mplnet.com/test-menu/ 43。分子病理实验室网络。2024年6月5日访问。https://www.mplnet.com/cellular-免疫学/44。新基因学。2024年6月5日访问。https://neogenomics.com/test-menu/high-sensitivity-pnh-evaluation 45。俄勒冈州健康与科学大学实验室服务。 2024年6月5日访问。https://www.ohsu.edu/lab-services/pnh-test-high-sensitivity 46。 pathgroup。 2024年6月5日访问。https://pathconnect.pathgroup.com/testmenu/#/testinfo/ue5irq%3D%3D47。 任务诊断。 2024年6月5日。 UF病理实验室。 2024年6月5日。 爱荷华大学诊断实验室。 2024年6月5日访问。https://www.healthcare。 uiowa.edu/path_handbook/rhandbook/test1123.html 50。 匹兹堡大学。 2024年6月5日访问。https://www.path.pitt.edu/divisision/dives-laboratory-medicine/discion-clinical-clinical-hematopathology/clinical-flow-cytertry-0 51。俄勒冈州健康与科学大学实验室服务。2024年6月5日访问。https://www.ohsu.edu/lab-services/pnh-test-high-sensitivity 46。pathgroup。2024年6月5日访问。https://pathconnect.pathgroup.com/testmenu/#/testinfo/ue5irq%3D%3D47。任务诊断。2024年6月5日。UF病理实验室。2024年6月5日。爱荷华大学诊断实验室。2024年6月5日访问。https://www.healthcare。uiowa.edu/path_handbook/rhandbook/test1123.html 50。匹兹堡大学。2024年6月5日访问。https://www.path.pitt.edu/divisision/dives-laboratory-medicine/discion-clinical-clinical-hematopathology/clinical-flow-cytertry-0 51。德克萨斯大学医学分公司。2024年6月5日访问。https://www.utmb.edu/lsg2/home/details?id=1366 52。Kulasekararaj ag等。UW医学实验室医学和病理学。 2024年6月5日访问。https://dlmp.uw.edu/test-guide/view/pnhflo 53。 血液复兴。 2023; 59:101041。 doi:10.1016/j.blre.2023.101041UW医学实验室医学和病理学。2024年6月5日访问。https://dlmp.uw.edu/test-guide/view/pnhflo 53。血液复兴。2023; 59:101041。 doi:10.1016/j.blre.2023.101041
1. Soliris [包装说明书]。马萨诸塞州波士顿:Alexion Pharmaceuticals, Inc.;2024 年 3 月。2. Loirat C、Fakhouri F、Ariceta G 等人。儿童非典型溶血性尿毒症综合征管理的国际共识方法。儿科肾脏病学。在线发表日期:2015 年 4 月 11 日。3. Parker CJ。补体抑制疗法时代阵发性睡眠性血红蛋白尿的治疗。血液学。2011;21-29。4. Sanders D、Wolfe G、Benatar M 等人。重症肌无力管理的国际共识指南。神经病学。2021;96 (3) 114-122。5. Jaretzki A、Barohn RJ、Ernstoff RM 等人。重症肌无力:临床研究标准建议。 Ann Thorac Surg。2000;70:327-34。6. Hillmen P、Young NS、Schubert J 等。补体抑制剂依库珠单抗在阵发性睡眠性血红蛋白尿症中的应用。NEJM。2006;335:1233-43。7. Howard JF、Utsugisawa K、Benatar M。依库珠单抗在抗乙酰胆碱受体抗体阳性难治性全身性重症肌无力(REGAIN)中的安全性和有效性;一项 3 期、随机、双盲、安慰剂对照、多中心研究。Lancet Neurol。 2017 年 10 月 20 日。http://dx.doi.org/10.1016/S1474-4422(17)30369-1Ingenix HCPCS Level II,Expert 2011。8. Brodsky RA、Young NS、Antonioli E 等。补体抑制剂依库珠单抗治疗阵发性睡眠性血红蛋白尿患者的多中心 3 期研究。Blood。2008;111(4):1840-1847。9. Borowitz MJ、Craig F、DiGiuseppe JA 等。流式细胞术诊断和监测阵发性睡眠性血红蛋白尿及相关疾病的指南。Cytometry B Clin Cytom。2010:78:211-230。 10. Preis M, Lowrey CH。阵发性睡眠性血红蛋白尿 (PNH) 的实验室检查。Am J Hematol。2014;89(3):339-341。
根据世界卫生组织的总结,“心血管疾病是世界上死亡的主要原因,占全球死亡的30%”,这些死亡与动脉粥样硬化有关,这是血液胆固醇的积累,因此会导致动脉中的脂肪凝聚,这会导致其堵塞。因此,许多人寻求包括营养策略在内的治疗方法,以改善甚至可以防止血脂水平和炎症标志物的不良变化。因此,这项研究旨在分析饱和和不饱和脂肪酸的影响的差异可导致心血管健康和脂质剖面血液检查。通过阅读来自各个国家的科学文章和准则,可以验证单不饱和和多不饱和脂质替换饱和脂肪会促进炎症标志物的降低,从而改善了发育不良的治疗方法,并主要降低心血管风险。关键字:脂肪酸;治疗;心血管;验血;血脂血症。摘要根据世界卫生组织的摘要:“心血管疾病是死亡荣耀的主要原因,占全球死亡的30%。”这些死亡与动脉粥样硬化有关,该动脉粥样硬化是血液中胆固醇的积累,导致动脉中脂肪积聚,最终导致阻塞。因此,许多人寻求包括营养策略在内的治疗方法,以改善甚至预防血脂水平和信息标记的不良变化。因此,这项研究旨在分析饱和和不饱和脂肪酸对心血管健康和血液学测试脂质概况的影响的差异。 div>通过对科学艺术的评论很重要,您可以告诉心血管风险。 div>关键字:脂肪酸;治疗;心血管;血液学检查;血脂异常。 div>根据世界卫生组织的总结,“心血管疾病是世界上死亡的主要原因,占全球死亡的30%。” div>这些死亡与动脉粥样硬化有关,这是血液胆固醇的积累,这会导致脂肪在动脉中的积累,并最终导致障碍物。 div>结果,许多人寻求包括营养策略在内的治疗方法,以改善甚至可以防止血脂水平和炎症标志物的不必要变化。 div>因此,本研究旨在分析饱和和不饱和脂肪酸可以对脂质剖面的心血管健康和血液学测试产生的影响的差异。 div>关键字:脂肪酸;治疗;心血管;血液学检查;血脂异常。 div>通过阅读来自多个国家的科学文章和指南,可以验证替代单不饱和和多不饱和脂质饱和的脂肪会促进炎症标志物的降低,从而改善了血脂异常的治疗方法,主要减少心血管风险。 div>
摘要:背景:有关造血干细胞移植(HSCT)的数据有限。这项研究旨在分析我们计划成立20周年的长期HSCT结果。方法:在2000年1月至2020年12月之间接受移植的患者中收集数据。用于分析涉及Chi Square方法的分类数据的统计方法,并将独立t检验用于连续数据。OS和RF,并使用对数秩检验评估了HSCT类型和HSCT疾病指示之间差异的检验。结果:总共进行了201次移植,186例患者有资格进行生存分析。整个队列的五年总生存期(OS)和无复发生存期(RFS)分别为62.3和55%。十年OS和RFS分别为50.5和53.2%。对于自动,Allo-和Haplo-HSCT,五年OS为63.9、60.3和50%;十年OS分别为52.8、47.7和50%(p = 0.411)。五年RFS为38、71.3和50.5%;十年RFS分别为30.4、71.3和50.5%(p = 0.002)。与移植相关的死亡率分别为4.6、12.9和21.4%。在36例患者中发生了非杂物死亡率(20.3%)。对于同种和Haplo-SCT,急性移植抗宿主病(GVHD)的发生率分别为30.7和12.5%,慢性GVHD发生率分别为32和37.5%。这鼓励在发展中国家执行该程序。2024; 34:45-56。结论:这项研究提供了长期移植结果,尽管设置有限,但对于自体和同种异体SCT表现出了令人印象深刻的结果。关键词:L造血干细胞移植L移植结果L与移植相关的死亡率l嫁接 - 抗宿主病J剧洛氏菌Trantfus Med。
1. Sung H, Ferlay J, Siegel RL 等人。2020 年全球癌症统计:GLOBOCAN 对 185 个国家/地区 36 种癌症的全球发病率和死亡率的估计。CA Cancer J Clin。2021;71(3):209-249。doi: 10.3322/caac.21660 2. Obel JC、Friberg G、Fleming GF。子宫内膜癌的化疗。Clin Adv Hematol Oncol。2006;4:459-468。3. Mirza MR、Chase DM、Slomovitz BM 等人。Dostarlimab 治疗原发性晚期或复发性子宫内膜癌。N Engl J Med。2023;388(23):2145-2158。 doi: 10.1056/NEJMoa2216334 4. Levine DA。子宫内膜癌的综合基因组特征。自然。2013;497(7447):67-73。doi: 10.1038/nature12113 5. León‐Castillo A、De Boer SM、Powell ME 等人。PORTEC-3 高危子宫内膜癌试验的分子分类:对预后的影响和辅助治疗的益处。临床肿瘤学杂志。2020;38(29):3388-3397。doi: 10.1200/JCO.20.00549 6. Concin N、Matias‐Guiu X、Vergote I 等人。 ESGO/ESTRO/ESP 子宫内膜癌患者管理指南。Int J Gynecol Cancer。2020;31(1):12-39。doi: 10.1136/ijgc-2020-002230 7. RAINBO 研究联盟。根据分子特征改进子宫内膜癌辅助治疗:RAINBO 临床试验计划。Int J Gynecol Cancer。2022;33(1):109-117。doi: 10. 1136/ijgc-2022-004039 8. Van den Heerik ASVM、Horeweg N、Nout RA 等人。PORTEC-4a:针对中高风险子宫内膜癌女性的基于分子特征的辅助治疗的国际随机试验。国际妇科癌症杂志。2020;30(12):2002-2007。doi:10.1136/ijgc-2020-001929
1。NIH。 [2024年8月退休] Covid-199治疗指南面板。 冠状病毒疾病2019(COVID-19)治疗指南2023;可从以下网站获得:https://www.covid19treatmentguidelines.nih.gov/whats-new/。 2。 Bhimraj,E.A。 美国传染病学会有关Covid-19患者的治疗和管理指南。 2012年8月12日;可从以下网站获得:https://www.idsociety.org/practice-guideline/covid-19-guideline-trachine-trachine-and-management/。 3。 Lopinto,J。等人,在危重患病的急性呼吸窘迫综合征的高剂量类固醇中,患有地塞米松治疗的19例患者:一项多中心队列研究。 Crit Care Med,2023。 51(10):p。 1306-1317。 4。 vlaar,A.P.J。等人,抗C5a抗体(Vilobelimab)治疗,用于重病,机械地机械地进行了Covid-19(Panamo)的患者:多中心,双重,随机,随机,随机,安慰剂,安慰剂控制,3期。 Lancet Respir Med,2022。 10(12):p。 1137-1146。 5。 Bar,K.J。等人,一项对住院Covid-19-19肺炎的个体的康复血浆的随机对照研究。 J Clin Invest,2021。 131(24)。 6。 Libster,R。等,《早期高尖血浆疗法》,以防止老年人严重的COVID-19。 n Engl J Med,2021。 384(7):p。 610-618。 7。 Simonovich,V.A。等人,Covid-19严重肺炎中康复血浆的随机试验。 n Engl J Med,2021。 384(7):p。 619-629。 8。 9。NIH。[2024年8月退休] Covid-199治疗指南面板。冠状病毒疾病2019(COVID-19)治疗指南2023;可从以下网站获得:https://www.covid19treatmentguidelines.nih.gov/whats-new/。 2。 Bhimraj,E.A。 美国传染病学会有关Covid-19患者的治疗和管理指南。 2012年8月12日;可从以下网站获得:https://www.idsociety.org/practice-guideline/covid-19-guideline-trachine-trachine-and-management/。 3。 Lopinto,J。等人,在危重患病的急性呼吸窘迫综合征的高剂量类固醇中,患有地塞米松治疗的19例患者:一项多中心队列研究。 Crit Care Med,2023。 51(10):p。 1306-1317。 4。 vlaar,A.P.J。等人,抗C5a抗体(Vilobelimab)治疗,用于重病,机械地机械地进行了Covid-19(Panamo)的患者:多中心,双重,随机,随机,随机,安慰剂,安慰剂控制,3期。 Lancet Respir Med,2022。 10(12):p。 1137-1146。 5。 Bar,K.J。等人,一项对住院Covid-19-19肺炎的个体的康复血浆的随机对照研究。 J Clin Invest,2021。 131(24)。 6。 Libster,R。等,《早期高尖血浆疗法》,以防止老年人严重的COVID-19。 n Engl J Med,2021。 384(7):p。 610-618。 7。 Simonovich,V.A。等人,Covid-19严重肺炎中康复血浆的随机试验。 n Engl J Med,2021。 384(7):p。 619-629。 8。 9。冠状病毒疾病2019(COVID-19)治疗指南2023;可从以下网站获得:https://www.covid19treatmentguidelines.nih.gov/whats-new/。2。Bhimraj,E.A。 美国传染病学会有关Covid-19患者的治疗和管理指南。 2012年8月12日;可从以下网站获得:https://www.idsociety.org/practice-guideline/covid-19-guideline-trachine-trachine-and-management/。 3。 Lopinto,J。等人,在危重患病的急性呼吸窘迫综合征的高剂量类固醇中,患有地塞米松治疗的19例患者:一项多中心队列研究。 Crit Care Med,2023。 51(10):p。 1306-1317。 4。 vlaar,A.P.J。等人,抗C5a抗体(Vilobelimab)治疗,用于重病,机械地机械地进行了Covid-19(Panamo)的患者:多中心,双重,随机,随机,随机,安慰剂,安慰剂控制,3期。 Lancet Respir Med,2022。 10(12):p。 1137-1146。 5。 Bar,K.J。等人,一项对住院Covid-19-19肺炎的个体的康复血浆的随机对照研究。 J Clin Invest,2021。 131(24)。 6。 Libster,R。等,《早期高尖血浆疗法》,以防止老年人严重的COVID-19。 n Engl J Med,2021。 384(7):p。 610-618。 7。 Simonovich,V.A。等人,Covid-19严重肺炎中康复血浆的随机试验。 n Engl J Med,2021。 384(7):p。 619-629。 8。 9。Bhimraj,E.A。美国传染病学会有关Covid-19患者的治疗和管理指南。2012年8月12日;可从以下网站获得:https://www.idsociety.org/practice-guideline/covid-19-guideline-trachine-trachine-and-management/。3。Lopinto,J。等人,在危重患病的急性呼吸窘迫综合征的高剂量类固醇中,患有地塞米松治疗的19例患者:一项多中心队列研究。Crit Care Med,2023。51(10):p。 1306-1317。4。vlaar,A.P.J。等人,抗C5a抗体(Vilobelimab)治疗,用于重病,机械地机械地进行了Covid-19(Panamo)的患者:多中心,双重,随机,随机,随机,安慰剂,安慰剂控制,3期。Lancet Respir Med,2022。10(12):p。 1137-1146。5。Bar,K.J。等人,一项对住院Covid-19-19肺炎的个体的康复血浆的随机对照研究。J Clin Invest,2021。131(24)。6。Libster,R。等,《早期高尖血浆疗法》,以防止老年人严重的COVID-19。n Engl J Med,2021。384(7):p。 610-618。7。Simonovich,V.A。等人,Covid-19严重肺炎中康复血浆的随机试验。n Engl J Med,2021。384(7):p。 619-629。8。9。Shibeeb,S。等人,Covid-19患有血液学恶性肿瘤患者的康复血浆治疗的有效性:系统评价。呼吸剧Rep,2022。14(4):p。 377-388。Misset,B。等人,在机械通气患者中,用于19009诱导的ARDS的疗养血浆。n Engl J Med,2023。389(17):p。 1590-1600。10。Alhazzani,W。等。幸存的败血症运动:关于2019年冠心病患有冠心病病毒病的成年人的指南(COVID-19)。Crit Care Med,2020年。48,E440-E469 doi:10.1097/ccm.0000000000004363。11。Michelson,A.P。等人,在接受加湿的高流量鼻氧的COVID-19患者中使用吸入的嗜oprostenol,与进行性呼吸道衰竭有关。胸部重症监护,2023年:p。 100019。
27。Vidal L,Gafter-Gvili A,Salles G等。:利妥昔单抗维持可改善卵泡淋巴瘤患者的总体存活 - 个体患者数据荟萃分析。EUR J CANCER 2017; 76:216–25。 28。 Matsumoto K,Takayama N,Aisa Y等。 :对日本患有复发或难治性的柔软性B细胞非霍奇金淋巴瘤和披风细胞淋巴瘤的日本患者的Bendamustine Plus Rituximab的II期研究。 int J Hematol 2015; 101:554–62。 29。 Weide R,Feiten S,Friesenhahn V等。 :复发/难治性慢性淋巴细胞性白血病和懒惰的B细胞淋巴瘤患者的含Bendamustine方案的恢复,可实现高反应率和一些持久的缓解。 Leuk Lymphoma 2013; 54:1640–6。 30。 Cheson BD,Chua N,Mayer J等。 :在Gadolin研究中接受了obinutuzumab加上obinutuzumustine诱导和obinutuzumab的维持,对利妥昔单抗不良的非霍奇金淋巴瘤患者的总体生存率受益。 J Clin Oncol 2018; 36:2259–66。 31。 Casulo C,Friedberg JW,Ahn KW等。 :早期治疗失败的卵泡淋巴瘤自体移植:一项国家淋巴结研究和国际血液和骨髓移植研究中心:生物血液骨髓移植2018年; 24:1163–71。 32。 Jurinovic V,Metzner B,Pfreundschuh M等。 生物血骨髓移植2018; 24:1172–9。 33。 Matasar MJ,Luminari S,Barr PM等。 34。 35。EUR J CANCER 2017; 76:216–25。28。Matsumoto K,Takayama N,Aisa Y等。:对日本患有复发或难治性的柔软性B细胞非霍奇金淋巴瘤和披风细胞淋巴瘤的日本患者的Bendamustine Plus Rituximab的II期研究。int J Hematol 2015; 101:554–62。29。Weide R,Feiten S,Friesenhahn V等。:复发/难治性慢性淋巴细胞性白血病和懒惰的B细胞淋巴瘤患者的含Bendamustine方案的恢复,可实现高反应率和一些持久的缓解。Leuk Lymphoma 2013; 54:1640–6。 30。 Cheson BD,Chua N,Mayer J等。 :在Gadolin研究中接受了obinutuzumab加上obinutuzumustine诱导和obinutuzumab的维持,对利妥昔单抗不良的非霍奇金淋巴瘤患者的总体生存率受益。 J Clin Oncol 2018; 36:2259–66。 31。 Casulo C,Friedberg JW,Ahn KW等。 :早期治疗失败的卵泡淋巴瘤自体移植:一项国家淋巴结研究和国际血液和骨髓移植研究中心:生物血液骨髓移植2018年; 24:1163–71。 32。 Jurinovic V,Metzner B,Pfreundschuh M等。 生物血骨髓移植2018; 24:1172–9。 33。 Matasar MJ,Luminari S,Barr PM等。 34。 35。Leuk Lymphoma 2013; 54:1640–6。30。Cheson BD,Chua N,Mayer J等。:在Gadolin研究中接受了obinutuzumab加上obinutuzumustine诱导和obinutuzumab的维持,对利妥昔单抗不良的非霍奇金淋巴瘤患者的总体生存率受益。J Clin Oncol 2018; 36:2259–66。31。Casulo C,Friedberg JW,Ahn KW等。:早期治疗失败的卵泡淋巴瘤自体移植:一项国家淋巴结研究和国际血液和骨髓移植研究中心:生物血液骨髓移植2018年; 24:1163–71。32。Jurinovic V,Metzner B,Pfreundschuh M等。生物血骨髓移植2018; 24:1172–9。33。Matasar MJ,Luminari S,Barr PM等。34。35。:叶淋巴瘤早期进展的患者的自体干细胞移植:对来自德国低级淋巴瘤研究组的2项随机试验的随访研究。:卵泡淋巴瘤:最近和新兴疗法,治疗策略和剩余的未满足需求。肿瘤学家2019; 24:E1236–50。Batlevi CL,Sha F,Alperovich A等。:现代时代的卵泡淋巴瘤:生存,治疗结果和高风险亚组的鉴定。血癌J 2020; 10:74。HübelK,Ghielmini M,Ladetto M,Gopal AK:治疗卵泡淋巴瘤的争议。 Hemasphere 2020; 4:E317。HübelK,Ghielmini M,Ladetto M,Gopal AK:治疗卵泡淋巴瘤的争议。Hemasphere 2020; 4:E317。
catia terezinha heimbecher电子邮件:catia.heimbecher@unisantacruz.edu.edu.br摘要摘要CAR-T和CAR-NK细胞是实验室免疫系统细胞,可以表达嵌合抗原受体,这使他们可以识别和特定的攻击癌细胞,从而在某些类型的类型的典型治疗中获得有效的治疗。癌症,尤其是血液学。这项系统评价的目的是通过CAR-T和CAR-NK细胞报告治疗,其优缺点,描述其处理过程以及对患者的应用。这项研究的方法是使用Medline,PubMed和Capes进行的系统综述,用于搜索有关CAR-T和CAR-NK细胞的文章,该文章使用关键字CAR-T和免疫疗法以及嵌合抗原和自然或汽车的肿瘤疗法以及肿瘤和受体。细胞和免疫疗法,肿瘤和嵌合抗原受体以及天然杀伤细胞。主要结果是463个报告。其中,有12个完成了资格标准,并被包括在研究中。解决Car-T和Car-No之间的差异,其优势和缺点,汽车制造过程,两种疗法的局限性,其制造和对患者的应用。可以得出结论,CAR-NK细胞疗法表明,与CAR-T细胞相比,它们的不良反应更少,可以收集广泛的选择,并且更容易被操纵。关键词:CAR-T,免疫疗法,肿瘤,嵌合抗原受体,天然杀伤细胞。
1。Frangoul,H。等。exagamglogene自动赛,用于严重的镰状细胞疾病。n Engl J Med 390,1649–1662(2024)。2。忘记,B。G。胎儿血红蛋白的遗传持久性的分子基础。ann。N. Y. Acad。 SCI。 850,38–44(1998)。 3。 Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。N. Y. Acad。SCI。 850,38–44(1998)。 3。 Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。SCI。850,38–44(1998)。 3。 Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。850,38–44(1998)。3。Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。Wienert,B。等。KLF1在英国HPFH中驱动胎儿血红蛋白的表达。血液130,803–807(2017)。4。Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。Wienert,B。等。编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。NAT COMUM 6,7085(2015)。5。Martyn,G。E.等。近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。血液133,852–856(2019)。6。Martyn,G。E.等。自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。nat Genet 50,498–503(2018)。7。Frati,G。等。CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。8。Anzalone,A。V。等。搜索和重新固定基因组编辑,无需双链断裂或供体DNA。自然576,149–157(2019)。9。Coleman,M。B.等。am。J. Hematol。42,186–190(1993)。 10。 Chen,P。J.等。42,186–190(1993)。10。Chen,P。J.等。Chen,P。J.等。g伽玛A伽马(β+)胎儿血红蛋白的遗传持久性:g伽玛-158 c-> t在顺式中与-175 t-> c c gamma-lobin基因的突变会导致G Gama-- gamma基因的增加导致G Gama-Globobin的增加。通过操纵细胞决定因素的编辑结果来增强质量编辑系统。Cell 184,5635-5652.E29(2021)。 11。 Ravi,N。S.等。 通过CRISPR基础编辑来识别新型HPFH样突变,从而提高了胎儿血红蛋白的表达。 Elife 11,E65421(2022)。 12。 Kim,H。K.等。 预测人类细胞中主要编辑指南RNA的效率。 nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。 13。 Nelson,J。W.等。 设计的Pegrnas提高了主要的编辑效率。 NAT生物技术40,402–410(2022)。 14。 Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Cell 184,5635-5652.E29(2021)。11。Ravi,N。S.等。 通过CRISPR基础编辑来识别新型HPFH样突变,从而提高了胎儿血红蛋白的表达。 Elife 11,E65421(2022)。 12。 Kim,H。K.等。 预测人类细胞中主要编辑指南RNA的效率。 nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。 13。 Nelson,J。W.等。 设计的Pegrnas提高了主要的编辑效率。 NAT生物技术40,402–410(2022)。 14。 Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Ravi,N。S.等。通过CRISPR基础编辑来识别新型HPFH样突变,从而提高了胎儿血红蛋白的表达。Elife 11,E65421(2022)。12。Kim,H。K.等。 预测人类细胞中主要编辑指南RNA的效率。 nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。 13。 Nelson,J。W.等。 设计的Pegrnas提高了主要的编辑效率。 NAT生物技术40,402–410(2022)。 14。 Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Kim,H。K.等。预测人类细胞中主要编辑指南RNA的效率。nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。13。Nelson,J。W.等。设计的Pegrnas提高了主要的编辑效率。NAT生物技术40,402–410(2022)。14。Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。核酸Res 50,1187–1197(2022)。15。Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Lee,J。等。prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。nat Commun 14,1786(2023)。16。Antoniou,P。等。基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。nat Commun 13,6618(2022)。17。Pavani,G。等。通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。血液Adv 5,1137–1153(2021)。18。Everette,K。A.等。在体内造血干细胞的体内质量编辑促进小鼠植入后镰状细胞疾病表型。nat Biomed Eng 7,616–628(2023)。19。Peterka,M。等。利用DSB修复以促进有效的同源性依赖性和 - 独立的质量编辑。nat Commun 13,1240(2022)。20。Magnani,A。等。对镰状细胞疾病的同种异体移植后混合嵌合体患者进行了广泛的多系数分析:对基因治疗的造血和植入阈值的见解。Haematologica 105,1240–1247(2020)。21。Sun,Y。等。 在小鼠中耐用基因校正的肺部干细胞的体内编辑。 科学384,1196–1202(2024)。 22。 Doman,J。L.等。 噬菌体辅助进化和蛋白质工程产生紧凑,有效的主要编辑者。 单元格186,3983-4002.E26(2023)。 23。 Wimberger,S。等。 同时抑制DNA-PK和POLθ提高了基因组编辑的整合效率和精度。 nat Commun 14,4761(2023)。 24。 Yan,J。等。 用内源性的小RNA结合蛋白改善原始编辑。 自然628,639–647(2024)。 25。 Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。 nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。 26。 核酸res。Sun,Y。等。在小鼠中耐用基因校正的肺部干细胞的体内编辑。 科学384,1196–1202(2024)。 22。 Doman,J。L.等。 噬菌体辅助进化和蛋白质工程产生紧凑,有效的主要编辑者。 单元格186,3983-4002.E26(2023)。 23。 Wimberger,S。等。 同时抑制DNA-PK和POLθ提高了基因组编辑的整合效率和精度。 nat Commun 14,4761(2023)。 24。 Yan,J。等。 用内源性的小RNA结合蛋白改善原始编辑。 自然628,639–647(2024)。 25。 Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。 nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。 26。 核酸res。在小鼠中耐用基因校正的肺部干细胞的体内编辑。科学384,1196–1202(2024)。22。Doman,J。L.等。噬菌体辅助进化和蛋白质工程产生紧凑,有效的主要编辑者。单元格186,3983-4002.E26(2023)。23。Wimberger,S。等。同时抑制DNA-PK和POLθ提高了基因组编辑的整合效率和精度。nat Commun 14,4761(2023)。24。Yan,J。等。 用内源性的小RNA结合蛋白改善原始编辑。 自然628,639–647(2024)。 25。 Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。 nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。 26。 核酸res。Yan,J。等。用内源性的小RNA结合蛋白改善原始编辑。自然628,639–647(2024)。25。Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。26。核酸res。Brinkman,E。K.,Chen,T.,Amendola,M。&Van Steensel,B。通过序列痕量分解对基因组编辑的易于定量评估。42,E168(2014)。 27。 Brusson,M。等。 新型的慢病毒载体,用于结合基因添加和基因沉默策略的镰状细胞疾病基因治疗。 mol the核酸32,229–246(2023)。 28。 Gaudelli,N。M.等。 腺嘌呤基础编辑者的定向演变,活动增加和42,E168(2014)。27。Brusson,M。等。 新型的慢病毒载体,用于结合基因添加和基因沉默策略的镰状细胞疾病基因治疗。 mol the核酸32,229–246(2023)。 28。 Gaudelli,N。M.等。 腺嘌呤基础编辑者的定向演变,活动增加和Brusson,M。等。新型的慢病毒载体,用于结合基因添加和基因沉默策略的镰状细胞疾病基因治疗。mol the核酸32,229–246(2023)。28。Gaudelli,N。M.等。腺嘌呤基础编辑者的定向演变,活动增加和