摘要:由于数据,计算能力和算法的巨大进展,基于AI的材料挖掘和设计引起了很多关注。但是,构建高性能AI模型需要有效的材料结构表示。在这项工作中,我们第一次提出了一种基于邻域路径复合物的结构表征方法。特别是,我们使用持久的邻域路径同源性来通过引入纤维化来获得结构特征。这种方法通过邻里挖掘物的有向边缘保留了更多的元素信息以及相应的物理学信息。为了验证我们的模型,我们与Carborane结构进行交叉验证。稳定性预测的Pearson系数高达0.903,与传统的持续同源方法相比,这一比例为15.5%。此外,我们基于邻域路径复合物构建了一个预测模型,以及预测Car-Boranes的同性恋,Lumo和Homo-Lumo - Lumo Gaps的Pearson系数分别为0.915、0.946和0.941。结果表明,我们提出的方法可以有效提取结构信息并实现准确的材料属性预测。
图1 - 酵母中染色体修复(CR)和外源修复(ER)途径的比较。A,ER和CR路径的概述。Cas9介导的DSB可以通过外源或染色体供体修复。er会导致外源供体的整合,而CR会重复现有的染色体供体。b,ER和CR途径的修复效率。使用一个ER供体或越来越多的CR供体引入和修复了CAS9 DSB。修复模板(LPA-REN-LPZ)旨在将LPA-T9-LPZ的CAS9目标位点突变为限制性核酸内切酶识别序列(REN),以促进筛选。对照显示在没有修复模板(无修复)和没有GRNA(无DSB)的情况下描述生存能力。生存能力(已修复的DSB的比例)。错误条代表S.D.三个生物学重复。c,不同大小的CR同源性区域的CR效率。cr模板具有从60 bp到280 bp的长度不等的同源区域,并将其整合到同一染色体基因座中,并用于修复Cas9 DSB。cr生存能力 1B。 错误条代表S.D. 三个生物学重复。1B。 错误条代表S.D. 三个生物学重复。1B。错误条代表S.D.三个生物学重复。
适配器蛋白在各种细胞内信号通路中起重要作用。信号传递适配器蛋白-2(Stap-2)是一种衔接蛋白,具有Pleckstrin同源性(PH)和SRC同源性2(SH2)结构域,以及YXXQ信号转换器和转录3(STAT3)的激活剂 - 在其C-末端区域的结合基序。Stap-2也是乳腺肿瘤激酶(BRK)的底物。stap-2/brk表达在乳腺癌中被放松管制,并增强了STAT3依赖性细胞增殖。在前列腺癌细胞中,Stap-2在刺激后与表皮生长因子受体(EGFR)相互作用并稳定,导致EGFR信号的上调,这有助于癌细胞增殖和肿瘤进展。因此,抑制STAP-2与BRK/EGFR之间的相互作用可能是这些癌症的治疗策略。为此,干扰stap-2/brk/egfr结合的肽可能具有很大的潜力。的确,所鉴定的肽抑制剂成功抑制了Stap-2/EGFR蛋白相互作用,EGFR稳定和癌细胞生长。此外,肽抑制剂抑制了鼠异种移植模型中人前列腺和肺癌细胞系中肿瘤的形成。本综述着重于抑制性肽作为治疗前列腺和肺癌的有前途的候选者。
RAS P21蛋白激活剂1(RASA1)位于铬-5q14.3上,是Rasgap家族的成员,其中包括NF1,DAB2IP和Rasal2(1)。RASA1包含以下域:SRC同源性2和3(SH2和SH3),N末端C2A和C2B,GTPase激活蛋白(GAP)和Pleckstrin同源(pH),它们附着在Bruton的酪氨酸酶(BTK)基础上。rasa1是具有双重指定性的差距,可增强和加速RAS和RAP的GTPase活性。值得注意的是,细胞内Ca 2+水平调节RASA1的间隙活性。当Ca 2+浓度较高时,RAS的C2结构域和RAP允许磷酸脂质的结合,而pH结构域则保持不活跃并防止脂质结合。rasa1通常位于细胞质中,作为可溶性蛋白质,并在细胞内Ca 2+浓度的受体介导的增加后募集到质膜上(2)。当RASA1与膜相关时,RASA1的RasGAP活性增加了,因为RasGap活性以RASA1的可溶形式有限,尽管未知的机制尚不清楚(3)。sh2 -ptyr相互作用允许RASA1与P190RHOGAP(P190RHOGAP -A,ARHGAP35)相互作用,这是Rho的差距(4)。由于其特殊
PARP酶的特征是在家族的基因和蛋白质中存在特征性PARP结构域(参考文献1)。“直接”家族在人类中体现了18个基因(PARP1-4,PARP5A,PARP5B,PARP6-17)(参考文献1,2)。然而,基于结构和功能同源性,PARP酶的“扩展”家族较宽(参考文献1)。Classical PARP enzymes catalyse the cleavage of NAD + to nicotinamide and ADP-ribose units which are transferred to acceptor target proteins, thus inducing protein mono-ADP- ribosylation (MARylation) or poly-ADP-ribosylation (PARylation) that in turn modulate the biological properties of the acceptor proteins (Refs 1 , 3 ).玛丽化和paryation是古老的反应,并且存在于生命的所有领域(细菌,植物,真菌和动物)(参考4)。为了更好地理解ADP-核糖基化所涉及的机制,我们将读者推荐给著名的评论:(参考1,5,6,7,8,9)。PARP酶具有广泛的生理和病理生理任务(参考文献8)。大部分细胞核化归因于PARP1和PARP2(参考文献10,11),并且PARP1和PARP2之间存在很强的结构和功能同源性(参考文献12、13)。最近的研究已经阐明了PARP1和PARP2的单独功能(例如(参考14)),在此我们将描述PARP2和DETIPHER的生物学作用,哪些是PARP2特异性的,哪些是与其他PARP酶共享的。
基因组编辑是一种利用工程核酸酶在特定基因组位置诱导双链断裂 (DSB) 的方法,以便利用细胞内源性 DNA 修复机制引入基因组修饰 [ 1 , 2 ]。DSB 形成后,细胞将利用两种修复机制中的一种——非同源末端连接 (NHEJ) 和同源性依赖性修复 (HDR),这两种机制均可用于诱导 DNA 变化 [ 3 , 4 ]。在 NHEJ 过程中,细胞将 DNA 的断裂末端重新连接在一起——这个过程很快但往往不准确,修复后的链通常包含小的突变,表现为小的缺失和插入 [ 5 , 6 ]。在基因组编辑中,NHEJ 用于通过功能丧失突变来灭活基因功能。HDR 是一个更复杂的过程,需要供体 DNA 与断裂的两侧都具有同源性。在 HDR 中,细胞处理 DSB 的末端,留下 3′突出端,这些突出端侵入供体 DNA 的同源位点,将其用作 DNA 合成的模板,从而纠正断裂并使其与供体 DNA 相同 [7]。虽然在自然界中,供体 DNA 是姐妹染色单体,但在基因组编辑中,外源 DNA 被引入细胞,作为模板,将所需的变化引入基因组 [8](图 1)。多年来,已有多种类型的工程核酸酶被用于诱导基因组编辑所需的 DSB,包括
图1:对称PRDM9结合如何促进染色体配对的模型。在特定靶基序的结合DNA时,PRDM9(橙色椭圆形)将DNA段接近染色体轴。PRDM9绑定的某些站点可能会经历DSB(红色星星)。DSB的切除会生成一个单链端,该端将搜索一个补充序列,以用作修复模板。在对称绑定prDM9的情况下(即在两个同源物上,左侧的情况),假设同源搜索仅限于轴区域,则更直接访问了同源物的两个姐妹染色单体所提供的模板,从而促进同源性搜索并与同源物配对。然后可以将断裂作为CO或NCO事件修复,在这两种情况下,都可以在破裂的位点实现基因转换。在不对称的PRDM9结合(右侧显示的情况)的情况下,同源物不太直接访问,从而阻止了有效的同源物参与。一旦同源物已突触(这要归功于其他DSB,都在同一对染色体上的其他地方的其他位置上出现的其他DSB,稍后将进行损坏的位点。 在与DSB相对应的位置上具有不活动的结合位点的情况下,NCO将有效地实现偏见的基因转换,而有利于无效版本。稍后将进行损坏的位点。在与DSB相对应的位置上具有不活动的结合位点的情况下,NCO将有效地实现偏见的基因转换,而有利于无效版本。
CRISPR / Cas12a 是一种单效应核酸酶,与 CRISPR / Cas9 一样,由于其能够产生靶向 DNA 双链断裂 (DSB) 而被用于基因组编辑。与 Cas9 产生的平端 DSB 不同,Cas12a 产生的粘性末端 DSB 可能有助于精确的基因组编辑,但这一独特功能迄今为止尚未得到充分利用。在当前的研究中,我们发现,短双链 DNA (dsDNA) 修复模板包含一个与 Cas12a 产生的 DSB 末端之一匹配的粘性末端和一个与 DSB 另一端相邻的基因组区域具有同源性的同源臂,能够精确修复 DSB 并引入所需的核苷酸替换。我们将这种策略称为“连接辅助同源重组”(LAHR)。与单链寡脱氧核糖核苷酸 (ssODN) 介导的同源定向修复 (HDR) 相比,LAHR 的编辑效率相对较高,这在报告基因和内源基因中均有体现。我们发现 HDR 和微同源介导的末端连接 (MMEJ) 机制都参与了 LAHR 过程。我们的 LAHR 基因组编辑策略扩展了基因组编辑技术的范围,并更广泛地了解了基因组编辑中涉及的 DNA 修复机制的类型和作用。
图1。使用ssDNA或PCR产物作为HDR模板(a)上部的蛋白质标记的策略示例:据报道编码Centriolar远端附属物蛋白SCLT1的C-末端的基因组序列。带下划线的序列代表CrRNA识别位点,PAM序列为黄色,垂直虚线表示切割位点。鉴于距离内源性终止密码子(BOLD大写字母的TAA)距离为14 bp,插入位点被任意定位为距剪切位点1 bp的位置,即在SCLT1的密码子之间的最接近的交界处。在下部,密码子(上图)和相应的氨基酸性残基(下图)构成了插入物:蓝色大写字母是指可易加的链接器,然后是v5-tag(红色)和附加的外源终止密码子(黑色)。50 bp lha或rha = 50碱基对左同源臂或右同源臂。(b)使用PCR产物作为供体DNA生成具有荧光蛋白(FP)的蛋白质(您最喜欢的蛋白质,YFP)的C端标记的示意图。PCR模板由带有FP,2A元件和电阻盒(R)的标准质粒(左侧)组成。使用一对60mer引物进行PCR反应。在右侧代表了目标基因座(您最喜欢的基因,YFG)的编辑。
结是嵌入s 1,→s 3的环境同位素类型(请参见图2和定义2.1),自从远古时代以来,人类使用了自鞋款发明以来的最新时代。结的数学研究始于开尔文勋爵,假设原子实际上是结,分子是在以太中流动的链接。他的合作者彼得·泰特(Peter Tait)随后发起了结理论领域。基本问题是:给定两个结,它们是否相同?在20世纪初期的拓扑发展发展之后,开发了许多结的结[39],以便对这个问题提供答案。当发现与3个和4个manifolds的研究深入联系时,对结理论的兴趣就会上升。例如,使用结来证明有异国情调的r 4,即同构但不构型的歧管对r 4 [15]。Jones和Witten通过发现琼斯多项式[20]及其与量子拓扑的量子场理论[41]的关系彻底改变了领域。这些突破之后,发现了Khovanov同源性[22]和结式同源性[35],这些[35]极大地概括了琼斯和亚历山大多项式,并提供了积极的研究领域。在本文中,我们主要对结理论的两个方面感兴趣。第一个是一个称为连接总和的操作(请参见图5),该总和需要两个方向的结,将其切开并胶合