用户友好的DNA工程方法可以实现多个PCR片段组件,核苷酸序列改变和定向克隆。靶DNA分子和克隆载体由PCR产生,而相邻片段之间具有6-10个同源性碱基。pCR引物包含一个二氧化神经菌残基(DU),该残基(DU)在同源性区域的3´末端,可以容纳核苷酸取代,插入和/或缺失。然后使用引物用离散的重叠片段扩增向量和靶DNA,这些片段在两端都包含DU。随后使用用户酶对PCR片段进行处理会在每个DU上产生一个单个核苷酸间隙,从而导致PCR片段侧翼,侧面有SS延伸,使定制DNA分子的无缝和方向组装成线性化的载体。多碎片组件和/或各种诱变变化。
lissencephaly(光滑的大脑)是由不完全的神经元迁移和光滑的大脑表面特征的大脑发育异常,表现为严重的智力低下。遗传分析已经确定了两种在某些情况下突变的蛋白质,这些蛋白在某些情况下被指定为Lissencephaly-1蛋白(LIS1,也称为血小板激活因子45 kDa)和Doublecortin。lis1显示出与异源三聚体G蛋白的β-抑制的序列同源性,而双核素含有一个consensus abl磷酸化位点。此外,DCAMKL1(DoubleCortin-like和cam激酶样1)蛋白显示了与双铁蛋白的同源性。所有三种蛋白质在发育中的大脑中都高度表达,并且可以共同发挥作用以调节与神经元迁移有关的微管。DCAMKL1蛋白编码一种功能激酶,该功能激酶能够能够呈磷酸化髓磷脂碱性蛋白质及其本身,但其激酶活性似乎并不影响其微管聚合活性。
请参阅相关出版物和图 2 了解模板设计示例。我们建议使用在插入/替换序列(模板的编辑部分)两端至少有 200bp 同源臂的 dsDNA 模板。我们建议将模板克隆到简单的质粒中
8. TrueDesign 基因组编辑器将显示优先设计为最接近预期编辑位置(最多 40 bp 距离)的 gRNA 和供体 DNA。gRNA 距离编辑位置越远,敲入效率越低。所有设计的供体 DNA 序列(现在包括同源臂)都将接受 GeneArt 基因合成制造可行性检查。如果供体 DNA 未通过检查,您将无法选择该 gRNA,并且该行将变灰。在这种情况下,请选择不同的 gRNA 或 TALEN 对(如果可用),或更改插入位置或同源臂长度。对于每个 CRISPR-Cas9 gRNA 和 TALEN 对,可以通过单击供体 DNA 列中的眼睛图标来查看供体 DNA 序列。要在您选择的克隆软件中查看和注释供体 DNA 序列,请单击供体 DNA 列中的下载图标下载 FASTA 文件。确保供体 DNA 位于框架内以实现 GFP 的最佳表达。
图1:Amye的双横断事件。(a)AMYE集成矢量(顶部)的示意图,旨在将插入(黄色)集成到基因组中,如转化基因组(底部)所示。在集成向量上,插入物侧面是两个同源臂,Amye -Front和Amye -Back(绿色)。(b)缺失同源性区域的示意图。在枯草芽孢杆菌基因组中,AMYE之后是LDH-LCTP操纵子(顶部)。在PBGTRP及其衍生物中,带注释的Amye-Back区域之后是LDH的153 bp片段,而缺少中间的227 bp序列(底部)。(c)两个可能的双重跨事件。在这两种情况下,交叉都按预期的是在上游氨基部区域发生的,但是质粒中的基因组序列丢失允许在下游杏仁区域进行两个可能的重组事件。次要事件导致含有核糖体结合位点和LDH的第一个215个核苷酸的基因组序列损失。
我们研究了短长核苷酸序列的硅硅表征,这些核苷酸序列在死亡应力诱导的转录组分析中差异表达。他们表现出与C末端旋转肽和防御素样蛋白的同源性,从而揭示了它们的抗菌活性。他们的预测纤维印刷显示出与抗菌肽有关的蛋白质特征。这些短长的RGA已显示具有结构性基序,例如APLT P型ATPase,酪蛋白激酶II(CK2),蛋白激酶3,蛋白激酶C(PKC)和N-糖基化位点,它们是抗病基因的属性。在配体对接分析中活跃结合位点精氨酸和赖氨酸残基的预测将它们作为抗菌肽预测,因为它们与抗菌活性的密切关系。硅结构 - 功能表征已经预测了它们在抗微生物病原体的抗性中的作用。此外,预测的抗菌肽区域显示了它们与Pr-5样蛋白和AMP家族Thaumatin
CRISPR/CAS技术的常见应用涉及工程基因敲击素,其中DNA序列被取代或插入特定的基因组基因座。In contrast with CRISPR-mediated indels, which result from the error-prone non-homologous end joining (NHEJ) pathway, gene knockins are often engineered via homology-directed repair (HDR), typically through the use of CRISPR reagents (Cas enzyme and guide RNA) in tandem with a DNA template that shares homology with the target site and encodes for the desired modification (Hsu et al., 2014;图1,下面)。用于HDR的模板可以是双链DNA(DSDNA,线性或质粒)或单链DNA(SSDNA),并且最近的发现表明,修复机制取决于使用的模板类型而变化。 dsDNA触发了一种反映减数分裂同源重组(HR)的RAD51依赖性机制,而HDR涉及ssDNA(称为单链模板修复或SSTR)是Rad51独立的,并且需要多个组件,并且需要多个组成部分的Fanconi Anemia Anemia(FA)维修路径(RICHARDARDSON ERATHEWAY(RICHARDARSEN)等。
摘要背景:基因组编辑工具 CRISPR/Cas9 提供了一种产生靶向突变的有效方法,彻底改变了基因操作。该技术利用 Cas9 内切酶和向导 RNA (sgRNA),它们相互作用形成 Cas9-sgRNA 复合物,通过引入双链 DNA 断裂来启动基因编辑。我们测试了 CRISPR/Cas9 方法作为促进小麦致病真菌 Parastagonospora nodorum 中各种反向遗传方法的有效性。结果:用 Cas9 蛋白和 sgRNA 转化 Parastagonospora nodorum 原生质体,以 Tox3 效应基因为靶点的预组装核糖核蛋白 (RNP) 复合物的形式转化。随后对 P. nodorum 转化子的筛选表明,筛选出的突变体 100% 被编辑。我们进一步测试了 RNP 复合物与含有 1 kb 同源侧翼 DNA 的 Tox3 -同源定向修复盒共转化时的功效。随后对所得转化子进行筛选,结果显示同源重组效率超过 70%。使用含有 50 bp 微同源侧翼的可选择标记的 Tox3 -同源定向修复盒进一步转化也实现了 25% 的同源重组效率。这些同源定向修复方法的成功表明 CRISPR/Cas9 适用于其他体内 DNA 操作方法,例如插入 DNA 和产生点突变。结论:这些数据突出了 CRISPR/Cas9 在加速 Parastagonospora nodorum 中无转基因基因敲除以及促进其他基因操作方法方面的巨大潜力。使用这些工具将大大减少评估疾病基因需求和进行功能研究以确定其作用所需的时间。关键词:CRISPR/Cas9、基因编辑、核糖核蛋白复合物、Parastagonospora nodorum
摘要 利用与 Rauscher 白血病病毒 RNA 互补的放射性标记 DNA 分子杂交来探测人类淋巴瘤中的同源 RNA。32 个样本中有 22 个含有与小鼠白血病病毒 RNA 具有同源性的 RNA,但与导致小鼠乳腺肿瘤或鸡成髓细胞增多症的无关病毒的 RNA 不具有同源性。正常成人和胎儿组织未显示出显著水平的白血病特异性 RNA。看来人类淋巴瘤含有与已知导致实验动物白血病和淋巴瘤的病毒剂中发现的 RNA 序列同源的 RNA 序列。人类白血病和肉瘤也含有这种类型的 RNA,这一事实进一步强调了小鼠和人类来源的相应肿瘤之间的惊人相似性。我们利用分子杂交技术检测肿瘤中的病毒特异性 RNA (1),发现鼠类和人类来源的相应肿瘤具有显著的相似性。因此,人类乳腺癌含有 (2) 与小鼠乳腺肿瘤病毒 (MMTV) 具有序列同源性的 RNA。这种类型的 RNA 是恶性腺癌和髓样癌所特有的,在正常乳腺组织和诸如纤维囊性疾病和纤维腺瘤等良性病变中检测不到。与已知的白血病病毒和乳腺肿瘤病毒无关的事实一致,我们发现乳腺癌 RNA 不会与 Rauscher 白血病病毒 (RLV) RNA 互补的 DNA 杂交。最后,也是最引人注目的是,人类白血病细胞 (3) 和人类肉瘤 (4) 都含有与 Rauscher 白血病病毒同源的 RNA,而不是与小鼠乳腺肿瘤病毒同源的 RNA。研究小鼠和人类肿瘤之间的这种有趣的一致性显然很有意思。从病因和细胞病理学的角度来看,小鼠淋巴瘤与白血病和肉瘤有关。此外,值得注意的是,一些人类淋巴瘤伴有外周白血病的临床表现。无论如何,如果人类肿瘤与小鼠中观察到的肿瘤相似,那么可以预期人类淋巴瘤将像白血病和肉瘤一样,含有与小鼠白血病病原体唯一同源的 RNA。我们在此报告了对这一预期的确认。人类淋巴瘤(包括霍奇金病、淋巴肉瘤和网状细胞肉瘤)含有与劳舍尔白血病病毒 RNA 具有同源性的 RNA,但与小鼠乳腺肿瘤病毒或禽类髓母细胞瘤病毒 (AMV) 的无关 RNA 不具有同源性的 RNA。
CRISPR/Cas9 已成为斑马鱼基因组编辑的有力工具,它允许使用 DNA 模板和同源定向修复 (HDR) 快速产生功能丧失突变和特定等位基因的敲入。我们检查了合成的、化学修饰的 gRNA 的效率,并证明与重组 Cas9 蛋白结合可诱导插入缺失和大型基因组缺失。我们开发了一种体内遗传检测方法来测量 HDR 效率,并利用该检测方法来测试改变模板设计对 HDR 的影响。利用合成的 gRNA 和线性 dsDNA 模板,我们成功地在多个基因组位点进行了荧光团的敲入,并证明了以高效率通过种系传递。我们证明合成的 HDR 模板可用于敲入细菌硝基还原酶 (ntr),以促进特定细胞类型的谱系消融。总的来说,我们的数据证明了结合合成 gRNA 和 dsDNA 模板在体内进行同源定向修复和基因组编辑的实用性。