图 1. (4,4-DFPD) 2 PbI 4 薄膜的制备和通过 XRD 和 AFM 进行表征。a) 通过滴铸、旋涂和旋涂并伴有真空极化处理沉积 (4,4-DFPD) 2 PbI 4 2D 钙钛矿薄膜的示意图。b) 制备的薄膜的 XRD 图案。插图显示了 Williamson-Hall 图,用于分析薄膜中的应变无序性。通过 c) 滴铸、d) 旋涂和 e) 旋涂并伴有真空极化处理沉积的薄膜的 3D 表面形貌 AFM 图像。
图1:制造多功能基于纤维的探针。 a,将纤维预成型放在热图烤箱中,将其加热至320°C。Capstan在速度v Capstan处的预形式向下拉动,而在v downfeed处的预形成型则进一步降低了烤箱。 所产生的纤维的横截面区域,纤维=(v Capstan /v Downfeed)×A预成型。 钨(W)微管通过收敛(方法)掺入纤维中。 b,由此产生的纤维(D纤维=187。 1±2。 5 µm)具有与预形式相同的横截面几何形状(d Preform = 7。 5毫米)。 e,每个设备都有用于电气接口的电极连接器,一个不锈钢液体连接器(ID = 304 µm,OD = 457 µm),不锈钢支撑管(ID = 432 µM,OD = 635 µM)和纤维(D Fiber = 187。 1±2。 5 µm)。 我们使用了7个纤维长度。 0±0。 在这项研究中, 3 cm,但从0-2 m开始的长度是可行的。 d,纤维的横截面,被嵌入环氧树脂包围。 纤维的外径用虚线的白线表示。 e,纤维尖端的侧视图。 f,将设备组装在带有商业微训练的皮质网格中。 皮层网格组件包括用于硬脑膜穿透G的导管,所得纤维中电极的阻抗光谱表明,电极在10 2至10 5 Hz上具有特征性的1/F阻抗曲线。 插图显示600-1600 Hz之间的阻抗。 阻抗为1000 kHz = 223。 9±36。 7±22。图1:制造多功能基于纤维的探针。a,将纤维预成型放在热图烤箱中,将其加热至320°C。Capstan在速度v Capstan处的预形式向下拉动,而在v downfeed处的预形成型则进一步降低了烤箱。所产生的纤维的横截面区域,纤维=(v Capstan /v Downfeed)×A预成型。钨(W)微管通过收敛(方法)掺入纤维中。b,由此产生的纤维(D纤维=187。1±2。5 µm)具有与预形式相同的横截面几何形状(d Preform = 7。5毫米)。e,每个设备都有用于电气接口的电极连接器,一个不锈钢液体连接器(ID = 304 µm,OD = 457 µm),不锈钢支撑管(ID = 432 µM,OD = 635 µM)和纤维(D Fiber = 187。1±2。5 µm)。 我们使用了7个纤维长度。 0±0。 在这项研究中, 3 cm,但从0-2 m开始的长度是可行的。 d,纤维的横截面,被嵌入环氧树脂包围。 纤维的外径用虚线的白线表示。 e,纤维尖端的侧视图。 f,将设备组装在带有商业微训练的皮质网格中。 皮层网格组件包括用于硬脑膜穿透G的导管,所得纤维中电极的阻抗光谱表明,电极在10 2至10 5 Hz上具有特征性的1/F阻抗曲线。 插图显示600-1600 Hz之间的阻抗。 阻抗为1000 kHz = 223。 9±36。 7±22。5 µm)。我们使用了7个纤维长度。0±0。3 cm,但从0-2 m开始的长度是可行的。d,纤维的横截面,被嵌入环氧树脂包围。纤维的外径用虚线的白线表示。e,纤维尖端的侧视图。f,将设备组装在带有商业微训练的皮质网格中。皮层网格组件包括用于硬脑膜穿透G的导管,所得纤维中电极的阻抗光谱表明,电极在10 2至10 5 Hz上具有特征性的1/F阻抗曲线。插图显示600-1600 Hz之间的阻抗。阻抗为1000 kHz = 223。9±36。7±22。分别以蓝色和黄色显示了高压灭菌前后的平均阻抗±标准误差。在高压灭菌和206之前6kΩ。9kΩh,探针微流体的流体特性的表征表明,探针能够以10-100 nl/min的速度准确注射。每个点显示了测得的输注率和95%的置信区间;左上角插图显示在50 nl/min时的输注率误差。右下角插图显示了处于稳态状态下的输注曲线 - 数量以接近恒定的速率流动,而设定体积和测量体积之间的平均绝对误差(MAE)为1.77 nl。i,动态材料分析表明,纤维(n = 3)比不锈钢毛细管(ID = 51 µm,OD = 203 µM OD)刚性较硬。
图 2. 声子介导的量子态转移和过程层析成像。a 测量的 Q 1 激发态群体 PQ 1 e 与时间和 Q 1 裸频率的关系,耦合器 G 1 处于中间耦合 κ 1 / 2 π = 2.4 MHz(在 3.976 GHz 处测量),G 2 设置为零耦合。在这种配置中,Q 1 的能量弛豫主要由通过 UDT 1 的声子发射主导,其次是行进声子动力学。白色和红色虚线分别表示单向和双向工作频率(见正文);插图显示量子位激发和测量脉冲序列。b 通过行进声子在单向(左)和双向(右)工作频率下进行量子态转移。与单向传输相比,双向传输的 Q 2 的最终群体要小 4.5 倍,这与模拟结果一致。绿色实线来自主方程模拟。插图:脉冲序列。对于任一过程,Q 1 的发射率均设为 κ uni | bi c / 2 π = 10 | 6 MHz,对应于 81 | 138 ns 的半峰全宽 (FWHM) 声子波包。c 单向和双向区域的量子过程层析成像,过程保真度分别为 F uni = Tr ( χ exp · χ ideal ) = 82 ± 0 . 3 % 和 F bi = 39 ± 0 . 3 %。红色实线显示理想传输的预期值;黑色虚线显示主方程模拟,其中考虑了有限量子比特相干性和声子通道损耗。不确定性是相对于平均值的标准偏差。
表示用于子场拼接制造工艺的四个段或子块。 (E) 柄尖电极布局(顶部)和 CMOS 电路布局(底部)的细节。 (F) 柄中一个金属层穿过拼接区域时的自上而下的扫描电子显微镜 (SEM) 图像(比例尺:1 µm);左上:拼接重叠区域外的横截面;右上:最窄处的横截面;由于双重光刻胶曝光,金属线更窄。 (G) 柄尖机械研磨至 25° 的 SEM 照片;插图:探针 10
图1相位,形态,微结构和元素分布信息。(a)Ni-Co 9 S 8 /RGN,Ni-Co 9 S 8,Co 9 S 8 /RGN,NIS /NI 9 S 8 /RGN和RGN材料的XRD模式; (b)Ni-Co 9 S 8 /RGN的SEM图像; (c)Ni-Co 9 S 8 /RGN的HAADF-STEM图像; (d)Ni-Co 9 S 8 /RGN的HRTEM图像和相应的SAED模式(插图); (e)Ni-Co 9 S 8 /RGN的HAADF-STEM图像,相应的反向散射电子图像(F)和Ni,Co,s,c元素的EDS地图。
在静磁场(H)下将 Fe 3 O 4 @PVP NPs 与吸收的单体一起混合形成纳米粒子链;(iii)紫外线引发单体凝胶化并在纳米粒子链上形成响应性水凝胶壳。bg pH-RPNR 的表征。Fe 3 O 4 @poly(AA-co-HEA) pH-RPNR 的光学显微镜(b、c)、SEM(d)和 TEM(e)图像、FT-IR 光谱(f)和磁滞回线(g)。b、d 和 e 中的插图描绘了相应的高度放大图像。c 中的插图给出链长分布的直方图。
图 1. a) PPO-4000 在膨胀(4 o C)和塌陷(15 o C)构象下的 MD 模拟快照。碳原子以青色表示,氧以红色表示,氢以白色表示。为清晰起见,未显示水。b) PPO-4000(蓝色圆圈)和 PPO-2000(红色三角形)水溶液的相对热容量 𝛥𝐶 𝑝 与温度的关系。显示曲线作为视觉引导。(插图)分子量为 a. 4000 b. 2000 c. 1000 d. 725 的 PPO 水溶液的实验量热曲线 [28]。
图 1 出生后早期发育过程中皮质结节中 miR-34a 表达增加。 (A、B) TaqMan RT-qPCR 分析:(A) 与尸检对照组织 (n = 27) 相比,结节性硬化症 (TSC) 患者 (n = 37) 切除的皮质结节中 miR-34a 表达较高 (中位 FC = 3.4,p < 0.001); (B) 与年龄匹配的尸检对照组 (n = 13) 相比,0–4 岁 TSC 年龄组的 MiR-34a 较高 (FC =17.5, p < 0.001),但在 4–12 岁 (n = 10 vs. n = 5) 和 >12 岁 (n = 8 vs. n = 9) 的 TSC 与年龄匹配的对照组之间没有显着差异;(C, D) MiR-34a-5p 原位杂交:婴儿 TSC 皮质 (8 个月大) 与尸检衍生的对照皮质 (9 个月大) 的灰质 (C) 和白质 (D) 相比;miR-34a 原位杂交信号 (IHS) 的双标记,以蓝色显示,NeuN (C,插图) 和 GFAP (D,插图),以红色显示; (E, F) 双标记显示 miR-34a IHS 与 NeuN 在正常和畸形神经元(DN;E)中共定位,且与 GFAP 在巨细胞(GC;E、F)中共定位;*** p < 0.001;(A) 中的 Mann–Whitney 和 (B) 中的 Kruskal–Wallis 与 Dunn 的事后检验,中位数、误差线表示最小-最大范围。
图1:晶格结构,紧密的结合定义以及单个和耦合Polyyne链的带结构。(a)在Polyyne中较短的键和较长的键之间跳跃术语。c原子在A和B位点由黑色和绿色圆圈表示。应注意,这是晶格结构的卡通图,旨在表明δ1>δ2和所描绘的长度不缩放。实际上,δ2〜0。97δ1。(b)在AA配置中显示的两个与链间跳的关闭链链。c原子用不同的颜色表示。该系统显然具有围绕ZZ'线的反射(平等)对称性或晶格翻译产生的任何其他线路的对称性。等效地,每个单位单元格还有一条奇偶校验对称性(未显示在图中)。垂直虚线表示(a)和(b)的单位单元格。(c)单个和(d)耦合的多扬链的带结构,用于放松的链间分离和AA堆叠。虚线蓝线代表紧密结合,实心绿松石线代表DFT带结构。轨道投影的带结构是为(e)单个和(f)耦合链附近x点附近的X点绘制的。各种轨道对频段的贡献用不同的颜色表示。用绿色虚线显示费米级。在(f)的插图中显示了x点处最高占用分子轨道(HOMO)的带状电荷密度。与(a)中相同的轴方向遵循了插图图。
图1。(a)Berghia stephanieae和(b)Hermissenda opalescens中的线虫细胞中的特殊吞噬作用(即,在(a)berghia berghia opalescens中。(c)从Goodheart等人修改的广义CNIDOSAC示意图。2018 [14](根据CC by 4.0 Creative Commons许可)突出了Cnidosac的主要功能。(插图)线虫细胞(n)是由cnidosac(CS)内的cnidophages吞噬的。缩写:C,Cerata; CI,Cilia Tufts; CP,Cnidophage,DG,消化腺; E,Cnidosac的入口; EP,上皮; ex,从cnidosac退出;他,血细胞; m,肌肉; n,黑头囊。