量子计算 (QC) 在软件工程和信息科学领域受到越来越多的关注 [1]。它启发了计算机科学家、工程师和物理学家,其应用潜力无疑正在改变当前的信息技术 (IT) 格局 [2]。量子计算是一种基于量子力学的技术,能够快速解决复杂计算,同时处理和传输信息 [3]。例如,谷歌 Sycamore 量子处理器仅需 200 秒即可完成超级计算机需要 10,000 年才能完成的任务 [4]。据 [4] 称,该技术非常适合许多商业交易,因为它可以有效地分析数据集 [5],具有丰富的知识和更少的计算时间 [6],同时还使企业能够破译数据驱动的模式,从而发现新的机会。包括谷歌、英特尔和 IBM 等 IT 巨头以及 Rigetti 和 IonQ 等初创公司在内的多家组织都已经认识到量子计算的潜力 [7]。尽管量子计算的应用已在工业品和制药等一些商业领域根深蒂固 [8],但最近越来越多的其他行业和领域也认识到了其实际应用的潜力 [9]。例如,金融行业越来越认识到量子计算的快速数据处理能力的好处 [10]。因此,随着商界认识到量子计算在技术转型中的重要优势并更广泛地采用它,预计未来量子计算应用将大幅增加 [1] [11]。
经典计算机的历史是从使用真空管的初始概念验证,到最终完善的现代硅基架构而发展起来的。现在,量子计算机正从概念验证转向实用设计,并且正处于扩展到越来越多相干、连接良好的量子比特的阶段。自从 Cirac 和 Zoller 证明了一种将任意幺正运算应用于离子线性阵列的可行方法 [1] 以来,离子量子计算机一直是量子计算发展的有力竞争者。最近,霍尼韦尔 [2] 和 IonQ [3] 推出了两台使用镱的工业量子计算机。这些计算机采用镱同位素离子 171 Yb + 最外层 S 壳层的价电子来编码量子比特的状态。有两种相互竞争的架构:MUSIQC 和 QCCD [4,5]。为什么要使用稀土元素呢? [Xe] 4f 14 6s 1 电子构型之所以具有吸引力,是因为它通过使用 P 轨道实现了超精细到光学的耦合。此外,它相当容易实现。有几种元素和同位素可能适合这种构型。为什么特别选择 171 Yb +?选择这种同位素的动机是需要核自旋 1/2、观测稳定性和一阶塞曼不敏感时钟状态。可以考虑放射性同位素,但同位素必须足够稳定和普遍,以便与典型的金属源隔离。此外,我们要求电离能合理,电离原子带正电。171 Yb + 是唯一满足这些限制的同位素。
地震地球物理学在很大程度上依赖于地下建模,而地下建模基于对现场收集数据的数值分析。在生成一致的地下模型之前,对典型地震实验中产生的大量数据进行计算处理也需要同样大量的时间。电磁油藏数据,如 CSEM(受控源电磁)、岩石物理技术,如多井的电阻率和磁共振,以及工程优化问题,如油藏通量模拟器、井场设计和石油产量最大化,也需要强大的计算设备进行分析。另一方面,在过去十年中,量子计算机的发展取得了很大进展:机器利用量子力学定律比传统计算机更快地解决困难的计算问题。这种进步的一个具体例子就是所谓的量子霸权,最近已经使用专用量子计算机进行了演示 [1-3]。地球科学领域和相关行业(如碳氢化合物行业)有望从量子计算带来的进步中获益。目前,不同的量子技术和计算模型正在不断发展。IBM、谷歌和英特尔等巨头公司正在开发基于超导技术的量子计算机 [4]。其他公司也在投入大量精力构建基于约瑟夫森结的功能齐全的量子计算机,比如北美的 Rigetti,而美国的 IonQ 和奥地利的 AQT 则致力于开发基于捕获离子的计算机 [5]。加拿大公司 D-Wave 是量子退火计算模型的领先者 [6],该公司已经开始交易量子机器,加拿大的 Xanadu 也在提供对其光子量子计算机的云端访问 [7,8]。
程序委员会 George Amvrosiadis,卡内基梅隆大学 Ali Anwar,明尼苏达大学 Oana Balmau,麦吉尔大学 John Bent,希捷 Janki Bhimani,佛罗里达国际大学 Angelos Bilas,克里特岛大学和 FORTH Ali R. Butt,弗吉尼亚理工大学 Andromachi Chatzieleftheriou,微软研究院 Young-ri Choi,蔚山国立科学技术研究所 Angela Demke Brown,多伦多大学 Peter Desnoyers,东北大学 Aishwarya Ganesan,伊利诺伊大学厄巴纳-香槟分校和 VMware Research Ashvin Goel,多伦多大学 Haryadi Gunawi,芝加哥大学 Dean Hildebrand,谷歌 Yu Hua,华中科技大学 Jian Huang,伊利诺伊大学厄巴纳-香槟分校 Jooyoung Hwang,三星电子 Jinkyu Jeong,延世大学 Sudarsun Kannan,罗格斯大学 Sanidhya Kashyap,洛桑联邦理工学院 Youngjin Kwon,韩国科学技术研究院技术(KAIST) Patrick PC Lee,香港中文大学(CUHK) Sungjin Lee,大邱庆北科学技术大学(DGIST) Cheng Li,中国科学技术大学 Youyou Lu,清华大学 Peter Macko,MongoDB Changwoo Min,Igalia Beomseok Nam,成均馆大学 Sam H. Noh,弗吉尼亚理工大学 Raju Rangaswami,佛罗里达国际大学 Jiri Schindler,IonQ Phil Shilane,戴尔科技集团 Keith A. Smith,MongoDB Vasily Tarasov,IBM 研究部 Eno Thereska,Alcion, Inc. Carl Waldspurger,Carl Waldspurger 咨询公司 Wen Xia,哈尔滨工业大学 Gala Yadgar,以色列理工学院 Ming-Chang Yang,香港中文大学(CUHK)
由于处于早期阶段,NISQ 设备在硬件和架构方面高度多样化。领先的 QC 供应商(包括 IBM、Rigetti、Google、IonQ 等)采用了截然不同的方法来构建硬件量子比特。为了支持他们的量子比特选择,供应商还选择了不同的指令集和硬件通信拓扑。此外,由于量子比特控制和制造方面存在根本性挑战,QC 系统的硬件噪声也存在差异。虽然这种多样性本身对高效和可移植的应用程序执行构成了挑战,但现在可构建的 QC 硬件与引人注目的现实世界应用程序的资源需求之间也存在巨大差距。许多有趣的应用程序需要具有数千个量子比特和高精度操作的大型系统,但目前的硬件只有不到 100 个量子比特,并且容易出错。为了完全实现实用而强大的 QC,必须采用计算机架构技术和软件工具链来缩小各种算法和设备之间的算法到设备资源差距。为此,我们的文章 2 对量子计算机系统的跨平台特性进行了最深入的探索,并提供了全栈、基准测试驱动的硬件软件分析。从计算机架构的角度来看待量子计算机,我们评估了重要的硬件设计决策(量子比特类型、系统大小、连接性、噪声)、硬件软件接口(门集选择)和软件优化,以解决基本的设计问题:量子计算机系统应该向软件公开哪些指令?指令是否应该在跨不同量子比特类型的设备独立 ISA 中统一?硬件连接性和噪声特性如何影响基准测试性能?编译器可以克服硬件限制吗?为了回答这些问题,我们使用真实系统测量来评估一套量子计算机
计算技术推动了工业,科学,政府和社会的进步。尽管这些技术构成了智能系统的基础并实现了科学和业务创新,但它们也是进步的限制因素。量子计算有望通过更好,更快的解决方案来克服这些局限性,以优化,模拟和机器学习问题。过去几年的特征是量子计算的重大进展(例如,Google的量子至上实验),但该技术仍处于起步阶段,缺乏商业上相关的规模和应用。研究和工业化活动目前由国际技术公司(例如IBM,Google,Amazon Web服务,微软,霍尼韦尔,阿里巴巴)和初创企业(例如Ionq,Rigetti,D- Wave)驱动。到目前为止,行业在量子计算领域的最先进工作非常依赖于这些合作伙伴。欧洲和德国正在成功建立研究和资金计划,以促进技术的生态系统和工业化,从而确保数字主权,安全和竞争力。这样的生态系统包括硬件/软件解决方案提供商,系统集成商以及研究机构,初创企业(例如AQT,IQM)和行业的用户。量子计算广泛适用于影响所有行业的优化,机器学习和模拟中的业务问题。因此,行业在这个新兴的生态系统中寻求积极作用是有助于的。我们提出量子技术和应用联盟(QUTAC)的愿景是建立和推进量子计算生态系统,支持德国政府和各种研究计划的雄心勃勃的目标。我们共同认为,量子计算提供了一个令人信服的机会,可以提高数字主权并确保整个行业的竞争优势。QUTAC的应用工作组由代表不同行业的十名成员组成,特别是汽车制造,化学和药品生产,保险和技术。在本文中,我们(与空客作为外部贡献者)一起调查了这些部门以及航空航天行业中量子计算的当前状态,并确定了QUTAC对生态系统的贡献。
1 美国伊利诺伊州莱蒙特阿贡国家实验室 2 谷歌公司,美国华盛顿州西雅图 3 美国北卡罗来纳州达勒姆杜克大学电气与计算机工程系 4 美国北卡罗来纳州达勒姆杜克大学化学系 5 美国北卡罗来纳州达勒姆杜克大学物理系 6 美国北卡罗来纳州达勒姆杜克大学计算机科学系和数学系 7 美国科罗拉多州戈尔登科罗拉多矿业学院物理系 8 美国伊利诺伊州芝加哥芝加哥大学计算机科学系 9 美国伊利诺伊州厄巴纳-香槟市伊利诺伊大学物理系和 IQUIST 10 美国马萨诸塞州剑桥麻省理工学院电气工程与计算机科学系 11 谷歌公司,美国加利福尼亚州威尼斯 12 麻省理工学院物理系,美国马萨诸塞州剑桥 13 美国马里兰州帕克分校马里兰大学联合量子研究所、量子信息与计算机科学联合中心和物理系 14美国国家标准与技术研究所,美国马里兰州盖瑟斯堡 15 普林斯顿大学电气工程系,美国新泽西州普林斯顿 16 IonQ, Inc.,美国马里兰州学院公园 17 米德尔伯里学院计算机科学系,美国佛蒙特州米德尔伯里 18 L3Harris Technologies,美国佛罗里达州墨尔本 19 麻省理工学院机械工程系,美国马萨诸塞州剑桥 20 哈佛大学物理系,美国马萨诸塞州剑桥 21 IBM TJ Watson 研究中心,美国纽约约克敦高地 22 桑迪亚国家实验室,美国新墨西哥州阿尔伯克基 23 加州理工学院量子信息与物质研究所和沃尔特伯克理论物理研究所,美国加利福尼亚州帕萨迪纳 24 Microsoft Quantum,美国华盛顿州雷德蒙德 25 华盛顿大学核理论研究所和物理系,美国华盛顿州西雅图
Biscay和Telefónica政府之间的框架合作项目将拥有开发所需的最新一代设备。它将结合富士通提供的数字Annelaer(DA),该数字将安置在比斯威的Telefónica中央办公室中。这是历史上日本以外的基础设施中的第一个DA。此量子计算解决方案能够解决多达100,000个变量的问题,利用不同的量子现象(叠加,纠缠,隧道效应)来加快计算。此外,它将具有一个特定的量子仿真平台。目的是能够模仿量子电路的运行,这是通过基于超级计算(HPC)在经典数字计算机上运行软件来实现的,从而获得了几种仿真模式:状态向量,张量网络和MPS(Matrix product state State)。根据协议,Telefónica将为参与该项目的各方提供远程访问Fujitsu的量子计算和仿真平台。这些新平台将补充Telefónica已经提供给Biscay政府的平台。以这种方式,Biscay是世界上拥有更多量子平台和不同技术和不同制造商的地方的地方,例如Amazon Web Services(AWS),DWAVE,IBM,IBM,IONQ,IQM,IQM,Microsoft,Microsoft,OQC,Pascal,Pascal,Pascal,QCI量子量子,Qilimanjaro,Qilimanjaro,Qilimanjaro,Quilimanjaro,Quansinuum,Quarser,Quera,Quera,Quera,Quera,Quera,Quera,Quera,Quera,Quera和rigetti。我们希望公司在该领域进行实验。Alonso强调,在Telefónica,我们一直在研究Biscay的经济促进议员Ainara Basurko认为,“技术与研究中心,大学,商业计划和比斯开会之间的合作将加速该领土量子技术创新的发展和商业化。西班牙电视北领地董事ManuelángelAlonso说:‘在我们看来,与比斯开会政府的合作似乎是一个令人兴奋的项目。 量子计算将在许多层面上改变游戏规则,这使得必须准备面对其风险并从其代表的机会中受益至关重要。西班牙电视北领地董事ManuelángelAlonso说:‘在我们看来,与比斯开会政府的合作似乎是一个令人兴奋的项目。量子计算将在许多层面上改变游戏规则,这使得必须准备面对其风险并从其代表的机会中受益至关重要。
量子计算是计算机技术的一个分支,它使用量子理论的原理来处理信息。与传统的二进制计算机不同,后者使用的比特只能是 1 或 0,而量子计算机使用的量子比特可以同时存在于多个状态。这种称为叠加的特性允许进行更复杂的计算,并成倍增加处理能力。云计算是一种通过互联网提供数据存储、服务器、网络和数据库等服务的模型。量子云计算结合了这两种技术,使人们无需拥有一台量子计算机就可以访问强大的量子计算机。IBM 是目前唯一一家提供云量子计算设施的公司,提供免费使用的 5 量子比特机器。云计算和量子计算之间的关系是协同作用。用户无需拥有量子计算机,就可以利用基于云的量子处理来完成复杂的任务,例如解码化合物、优化供应链和管理财务风险。此外,云量子计算通过处理更复杂的数字来实现更安全的加密方法。云量子计算的应用包括教育,它可以用来向学生传授量子计算概念。借助云量子计算机,量子物理教育将变得更加容易。学生无需物理设备即可学习和进行实验。该领域具有巨大的发展潜力,研究人员可以利用云量子计算机来测试理论和开展研究。马丁·雷诺兹 (Martin Reynolds) 表示,由于特定的房间条件和需要新的编程技能,实施基于云的量子计算具有挑战性。IT 团队必须开发专业知识来微调算法和硬件。尽管面临挑战,但云提供商将成为首批提供量子即服务的提供商之一,为开发人员提供访问量子处理的方法。如果实际问题能够得到解决,量子云计算可能会产生与人工智能类似的深远影响。量子力学支持开发创新应用程序,包括量子算法的实施和测试。研究人员可以利用基于云的资源进行实验、测试理论和比较架构。此外,基于云的平台有助于创建向人们介绍量子概念的游戏。在数字化转型领域,可以使用基于云的量子资源处理和预测数 TB 的大数据。 qBraid Lab、Quandela Cloud、Xanadu Quantum Cloud、Rigetti Computing 的 Forest、Microsoft 的 LIQUi| 和 IBM Q Experience 等基于云的平台提供对各种量子设备和模拟器的访问。这些平台提供编程语言、开发框架和示例算法的工具。一些值得注意的基于云的量子资源包括:* qBraid Lab:一个提供软件工具和访问 IBM、Amazon Braket、Xanadu、OQC、QuEra、Rigetti 和 IonQ 量子硬件的平台。 * Quandela Cloud:第一台可通过 Perceval 脚本语言访问的欧洲光子量子计算机。 * Xanadu Quantum Cloud:一个基于云的平台,可访问三台完全可编程的光子量子计算机。 * Rigetti Computing 的 Forest:一个用于量子计算的工具套件,具有编程语言、开发工具和示例算法。 * Microsoft 的 LIQUi|:一个用于量子计算的软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:一个通过基于 Python 的 Qiskit 框架或图形界面提供对量子硬件和 HPC 模拟器的访问的平台。这些平台提供各种模拟器和量子设备,包括多个 transmon 量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q 网络提供的最多 65 量子比特的设备。 Qutech 是欧洲首个为两款硬件芯片提供基于云的量子计算的平台。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特传输处理器)和 QX(荷兰国家超级计算机 Cartesius 上的量子模拟器后端,最多可模拟 31 个量子比特)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用不同供应商的量子硬件和模拟器,而无需物理访问设备。这可以促进量子计算领域的协作和创新。一些著名的基于云的量子计算平台包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。欧洲首款可通过 Perceval 脚本语言访问的光子量子计算机。 * Xanadu Quantum Cloud:基于云的平台,可访问三台完全可编程的光子量子计算机。 * Rigetti Computing 的 Forest:量子计算工具套件,包含编程语言、开发工具和示例算法。 * Microsoft 的 LIQUi|:量子计算软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:通过基于 Python 的 Qiskit 框架或图形界面提供量子硬件和 HPC 模拟器访问的平台。这些平台提供各种模拟器和量子设备,包括多个量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q Network 提供的最多 65 量子比特的设备。 Qutech 是欧洲首个为两个硬件芯片提供基于云的量子计算的平台。 Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问这些设备。这可以促进量子计算领域的合作和创新。一些基于云的量子计算平台的著名例子包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。欧洲首款可通过 Perceval 脚本语言访问的光子量子计算机。 * Xanadu Quantum Cloud:基于云的平台,可访问三台完全可编程的光子量子计算机。 * Rigetti Computing 的 Forest:量子计算工具套件,包含编程语言、开发工具和示例算法。 * Microsoft 的 LIQUi|:量子计算软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:通过基于 Python 的 Qiskit 框架或图形界面提供量子硬件和 HPC 模拟器访问的平台。这些平台提供各种模拟器和量子设备,包括多个量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q Network 提供的最多 65 量子比特的设备。 Qutech 是欧洲首个为两个硬件芯片提供基于云的量子计算的平台。 Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问这些设备。这可以促进量子计算领域的合作和创新。一些基于云的量子计算平台的著名例子包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。和示例算法。 * 微软的 LIQUi|:一种用于量子计算的软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:一个通过基于 Python 的 Qiskit 框架或图形界面提供对量子硬件和 HPC 模拟器的访问的平台。这些平台提供各种模拟器和量子设备,包括多个量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q Network 提供的最多 65 量子比特的设备。Qutech 是欧洲第一个为两个硬件芯片提供基于云的量子计算的平台。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,它们托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问设备。这可以促进量子计算领域的合作和创新。一些著名的基于云的量子计算平台包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。和示例算法。 * 微软的 LIQUi|:一种用于量子计算的软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:一个通过基于 Python 的 Qiskit 框架或图形界面提供对量子硬件和 HPC 模拟器的访问的平台。这些平台提供各种模拟器和量子设备,包括多个量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q Network 提供的最多 65 量子比特的设备。Qutech 是欧洲第一个为两个硬件芯片提供基于云的量子计算的平台。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,它们托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问设备。这可以促进量子计算领域的合作和创新。一些著名的基于云的量子计算平台包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问这些设备。这可以促进量子计算领域的合作和创新。一些基于云的量子计算平台的著名例子包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问这些设备。这可以促进量子计算领域的合作和创新。一些基于云的量子计算平台的著名例子包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。这些平台为用户提供了一系列工具和资源,用于探索和开发量子算法和应用。文章还提到了几篇与基于云的量子计算相关的研究论文和出版物,凸显了人们对该领域日益增长的兴趣。这些平台为用户提供了一系列工具和资源,用于探索和开发量子算法和应用。文章还提到了几篇与基于云的量子计算相关的研究论文和出版物,凸显了人们对该领域日益增长的兴趣。
在过去几年中,软件和硬件的量子信息和量子计算进步的领域。实现了72 Qubit量子芯片,无奈之下,可编程超导处理器[1]预示了向量子至上实验实验[2]的显着胜利。另一方面,光子量子计算机Jiuzhang [3]在使用光子的玻色子采样中证明了量子计算优势。IBM,Google,IONQ和其他许多其他人对硬件开发的开发,引起了利用近期量子设备的巨大热情,开发了量子算法,并在科学和工程的各种领域中追求应用。最近出现了越来越多的研究,重点是量子优化[4,5],求解方程式[6-8],电子结构计算[9-15],量子加密[16,17],差异量子量化特征[18,19 [18,19]对于各种问题[20-23]和开放量子动力学[20-23]和开放量子动力学[24-28]。最近,量子机学习进一步探索并实现了与相应的经典软件相比可能显示出优势的量子软件[29 - 36]。然而,当试图将非线性函数包含到量子电路中时,难以避免地会出现困难。例如,非多物质激活函数的存在确保多层馈电网络可以近似任何功能[37]。即使非线性激活函数也不立即与量子理论的数学框架相对应,该量子理论描述了系统性操作和概率观察的系统进化。通常,发现使用简单的量子电路产生这些非线性极为困难。替代方法是做出折衷,例如应用简单的余弦函数,例如激活[38],或模仿重复测量的非线性函数[39 - 41],或者借助量子傅立叶变换[42](qft [43,44])。如何模拟任意函数,尤其是来自量子电路的非线性函数是要解决的重要问题。在本文中,我们提出了量子电路的通用设计,该设计能够生成任意有限的连续周期性周期性的1D函数,甚至可以使用给定的傅立叶扩展,甚至具有非线性函数,例如方波函数。输出信息全部存储在最后一个量子位,可以测量