摘要 - 我们介绍了新的INGAAS/INP单光雪崩二极管(SPAD)的设计和实验性 - 具有两个不同直径的二极管:i)10 µm设备,适用于基于光学的量子量子应用; ii)一个25 µm的一个,更适合自由空间应用。与上一代相比,我们改进了双锌扩散的设计并优化了层结构。我们在225 K和5 V多余的偏置下分别达到了低黑暗计数率,分别为10 µm和25 µM设备,在10 µM检测器时,分别在175 K时下降到每秒几十秒。在5 V多余的偏置和225 K温度下,这两个设备还显示出较高的光子检测效率(1064 nm时为33%,在1310 nm处为31%,在10 µM Spad中为1550 nm时25%)。通过自定义读数集成电路测量了后泵,实现了非常低的概率值。时机抖动与上一代设备相媲美。
版权所有 2020 Quantum Information Technology Pt y Ltd。保留所有权利。本文档中的信息如有更改,恕不另行通知。本文档中描述的软件是根据许可协议或保密协议提供的。该软件只能根据这些协议的条款使用或复制。未经 Quantum Information Technology Pt y Ltd 书面许可,不得复制、存储在检索系统中或以任何形式或任何电子或机械方式传输本出版物的任何部分,包括出于除购买者个人使用以外的任何目的进行影印和录制。Quantum Information Technology Pty Ltd
摘要:由于热力学的局限性,电子的玻尔兹曼分布阻碍了晶体管晶体管的进一步减少功耗。然而,随着铁电材料的出现,预计将解决此问题。在此,我们基于CIPS/MOS 2 van der waals杂结型演示了或逻辑铁电位晶体管。利用铁电材料的电场放大,CIPS/MOS 2 VDW铁电晶体管在三个数量级上的平均亚阈值摇摆(SS)为52 mV/dec的平均下阈值(SS),最小SS SS SS SS SS SS SS SS SS SS SS SS/DEC的最低限度为BoltzMann限制,从而在室内温度下限制。双门控铁电位晶体管表现出出色或逻辑的操作,供应电压小于1V。结果表明,由于其在距离内造成的,陡峭的suppherope subthers thrope subphersholt swing and Powdertage and plow show thres thrope subshort swing and show thershold swing and show supshort swing and show powertapt and pow showtage and powertage and the cips/mos 2 vdw铁电晶体管具有很大的潜力。
近年来,高精度感测和高质量的交流对综合电路的运行频率施加了巨大的要求,从W波段到G频段到G频段甚至Terahertz,这一频率增加了。[1,2]采用了多种技术来扩展摩尔法律并证明设备的频率特征,例如新型结构[3,4]和制造技术。[5]基于INP的高电子迁移式晶体管(HEMTS)具有降级的高载体板密度,峰值漂移速度和低轨道迁移率,并且记录的频率特性已超过1 THz。[6]因此,它们被认为是即将到来的THZ卫星通信和深空检测系统的功率放大器(PAS)和低噪声放大器(LNA)的有前途的候选者。[7 - 10]
高层大气中的冰云是气候模型中不确定性的主要来源。对对流层上部的冰粒子进行全球观测可以提供有关气溶胶污染对冰粒子大小影响的信息,而冰粒子大小会影响云的降水过程和反照率 [1-3]。亚毫米波辐射测量仪器可以填补大约 50 µm 至 1 mm 之间的云冰粒子大小信息的空白。例如,CloudSat 的 94 GHz 雷达可以观测直径大于 ~600 µm 的粒子,而 MODIS 红外辐射计可以观测小于 ~50 µm 的粒子 [2]。对流层水和云冰 (TWICE) 仪器试图从 6U CubeSat 平台对冰粒子大小和水蒸气剖面进行全球观测,使用 16 个亚毫米波辐射测量通道,范围
摘要:单层过渡金属二硫属化物 (TMD) 为研究二维 (2D) 极限下的激子态提供了平台。TMD 中激子的固有属性,例如光致发光量子产率、电荷态甚至结合能,可以通过静电门控、选择性载流子掺杂或基底电介质工程进行有效控制。本文,为了实现激子态的非挥发性电可调性,从而实现 TMD 的光学属性,我们展示了一种具有单层 MoSe 2 和超薄 CuInP 2 S 6 (CIPS) 的二维铁电异质结构。在异质结构中,CIPS 的电极化导致单层 MoSe 2 中出现连续、全局和大的电子调制。利用 CIPS 的饱和铁电极化,可以在单个器件中实现电子掺杂或空穴掺杂的 MoSe 2。异质结构中载流子密度可调性高达 5 × 10 12 cm − 2 。还表征了这些器件长达 3 个月的非挥发性行为。我们的研究结果为低功耗和长期可调的光电器件提供了一种新的实用策略。关键词:激子、MoSe 2 、CuInP 2 S 6 、铁电性、2D 铁电异质结构■引言
摘要:我们提出了一个基于INP的光子积分电路(PIC),该电路(PIC)由广泛可调的激光主振荡器组成,该电路供应一系列集成的半导体光放大器,这些放大器是在单模式波导中进行干涉式芯片的。我们展示了稳定且有效的片上相干束组合,并从单片PIC中获得高达240 MW的平均功率,其中30-50 kHz Schawlow-townes线宽,并且在整个延伸的C波段中均具有> 180 MW的平均功率。我们还探索了基于INP的激光和放大器阵列PIC的混合整合,并具有高质量的氮化硅微孔谐振器。,我们根据来自硝基硅微孔子芯片的反馈形成的外部空腔中的外部空腔中的干涉放大器阵列的增益观察激光;这种配置导致Schawlow-townes线宽缩小到约3 kHz,在SIN输出方面的平均功率为37.9 MW。这项工作展示了一种用于高功率,狭窄线宽源的新方法,该方法可以与芯片单模波导平台集成,以用于非线性集成光子学中的潜在应用。
高速宽带分频器广泛应用于正交信号产生[1, 2]、时间交织THA和ADC系统[3, 4, 5]以及其他高速通信领域[6]。目前,已有多种基于不同拓扑和工艺的分频器被报道。特别地,InP DHBT在相同尺寸的器件下具有更高的击穿电压和更好的频率性能[7, 8],这意味着InP DHBT是高速分频器电路的更好选择。但是,电路的工作频率范围不能超过与器件工艺有关的截止频率ft的几分之一[9],这限制了电流型逻辑 (CML) 分频器的工作频率[9, 10]。为了提高分频器电路的高频性能,应努力提高相同ft 的器件的工作频率的利用率。已经发表了许多增强技术来扩展分频器的工作频率范围,例如电感峰值[9, 11, 12, 13],分流电阻负载[14, 15, 16],非对称锁存器[17],动态分频器[18, 19, 20, 21, 22]和双射极跟随器[23, 24]。然而,在电路设计中最大限度地利用器件ft的报道很少。本信
高速和宽频频率分隔线被广泛用于正交信号生成[1,2],时间间隔的THA和ADC系统[3,4,5],以及其他高速通信[6]。到目前为止,已经报告了基于不同拓扑和过程的许多分隔线。尤其是INP DHBT具有更高的击穿电压和相同尺寸的设备的频率性能更好[7,8],这意味着INP DHBT是高速分隔电路的更好选择。但是,电路的工作频率范围不会超过与设备过程相关的切割频率f t的一部分[9],这是电流模式逻辑(CML)划分器的工作频率[9,10]。为了提高分隔电路的高频电量,应提高效率以增加具有相同f t的设备的工作频率的利用。已经发表了许多增强技术,以扩展频率分隔符的工作频率范围,例如电感峰[9、11、12、13],分裂固定载荷[14、15、16],不对称闩锁[17],动态频率
摘要 — 在本信中,我们介绍了一种适用于高速采样系统的基于磷化铟 (InP) 双异质结双极晶体管 (DHBT) 技术的 24 GSa/s、> 20 GHz 宽带跟踪保持放大器 (THA)。在所提出的方法中,输入级的输出极点被发射极电容/电阻衰减产生的零点抵消,从而扩展了带宽而没有压降。引入了输出级 V be 调制补偿技术以减少失真。单片微波集成电路 (MMIC) 原型仅占用 0.69 mm 2 ,实验结果表明它具有从直流到 22.3 GHz 的 0.112–f T 带宽,比使用 InP 技术的任何报道的紧凑型 THA 解决方案都要宽。此外,在 24 GSa/s 采样率下,无杂散动态范围 (SFDR) 优于 42 dB,总谐波失真 (THD) 小于 − 25 dBc。THA 功耗仅为 374 mW,是 InP 技术中报告的最低直流功耗之一。