种群渐近学在定理1.1的结果上是有价值的:它在最小的假设下提供了无偏见的结果,尤其是对潜在结果的分布假设。实际上,这意味着我们可以应用定理1.1,而无需对n个研究参与者的招聘方式提出任何要求。然而,该结果的局限性在于它没有表征采样误差ˆτdm-∆,因此并未直接提供对稳定推断的路线图。为了取得进步,我们在这里做出了一个假设,即研究参与者(即形式上,潜在结果对{y i(0),y i(1)})是从人口p中独立得出的。这样的种群采样假设,然后通过标准的大样本分析实现直接的分布结果和置信间隔。也可以在不进行此类抽样的情况下获得分配结果,但这样做依赖于我们目前不会追求的专业统计技术;我们将重新访问本章末尾和第12章中的书目注释中推断书目注释的无种群采样方法。
*作者按字母顺序列出。SH感谢ERC合并器Grant 864863的资金,该资金支持他和LB的时间。我们感谢Nick Bloom,Germain Gauthier,Evan Munro,David Rossell和Leif Thorsrud以及Aarhus,Bocconi,Bocconi,Bse,Bates,Bates,Columbia,Columbia,Eth Zurich,Eth Zurich,Zurich,LSE,LSE,LSE,LSE,LSE,澳大利亚储备银行,UCSD,UCSD,USC,USC,Wardich,Wardich,Wardrich,3岁文本 - 达塔(Text-As-Data)讲习班,2024年BSE夏季学院,2024年Fineml会议(USI Lugano),2024年2024年经济学夏季大会的机器学习(UCHICAGO),2024 NASM(Vanderbilt)(Vanderbilt),Esif-aiml(Cornell)(Cornell)和Esam(Monash)(Monash)con-Intortial in Internations on International and Parrence in International and Parron和2024 2024年Econdat秋季会议。我们还要感谢Kirill Safonov的出色研究帮助。
对于移动机器人在实际环境中运行,必须正确执行本地化,映射和导航等基本任务。这些任务强烈依赖于对环境的充分感知,在某些情况下,由于场景的本质,某些传感器的运行有限,甚至两者兼而有之,这在某些情况下可能具有挑战性。移动机器人应该能够智能地识别和克服异常情况,以避免感觉故障。我们在这项工作中提出了一种基于贝叶斯网络的新方法,该方法可以自然地代表传感器之间的复杂关系,能够整合异质的知识来源,从而扣除感觉异常的存在,并通过使用可用信息从它们中恢复。高度计算成本由一种利用我们模型结构的新算法来解决。我们的建议已在几个模拟中进行了评估,并且还在使用移动机器人的真实环境中进行了测试。获得的结果表明,与其他现有方法相比,它可以达到更好的性能和准确性,同时增强了整个感觉系统的鲁棒性。
在本文中,我们引入了一种生成具有未知模式的横截面/空间依赖模式的引导样品的方法,我们称之为空间依赖性野生引导程序。此方法是Shao(2010)的野生式引导程序的空间对应物,并通过将独立和相同分布的外部变量的向量乘以引导程序内部的特征位置来生成数据。我们证明了在数据的线性阵列表示下,我们的方法对研究和未予以指导的统计数据的有效性。模拟实验记录了改善我们方法推断的潜力。我们使用独特的公司级别的销售增长与本地市场的进口活动之间的关系来说明我们的方法,并使用唯一的公司级别和加拿大进口数据。
本评论论文概述了主动推论的历史和未来,这是对行动和感知的统一观点。主动推论是基于以下想法:有意义的行为取决于我们大脑对内部模型预测,推断和直接行动的隐含使用。我们的重点是这种(基本)感知理论的概念根和发展,并且不遵循严格的年代叙事。我们从赫尔姆霍尔兹(Helmholtzian)关于无意识推论的思想到当代对行动和感知的理解的进化。这样做,我们谈到了相关的观点,主动推论的神经基础以及未来发展的机会。此开发中的关键步骤包括制定dictixive编码模型和神经元信息传递的相关理论,使用顺序模型进行计划和策略优化以及层次(时间上)深度内部(即生成或世界)模型的重要性。主动推论已被用来解释解剖学和神经生理学的各个方面,以异常的精度控制提供心理病理学理论,并统一现有的心理理论。我们预计所有这些领域都会有进一步的发展,并注意到令人兴奋的早期工作,应用了神经科学以外的积极推断。这不仅暗示了生物学的未来,还表明了机器人技术,机器学习和人工智能。
描述观察到的数据与其估计的潜在变量之间的关联测试。JackStraw软件包提供了一种重采样策略和测试方案,以估计观察到的数据及其潜在变量之间关联的重要性。取决于数据类型和分析目的,潜在变量可以通过主体分析(PCA),因子分析(FA),K-均值聚类以及相关的无监督学习算法来估算。jackstraw方法学习了本循环分析中固有的过度拟合特征,在该特征中,观察到的数据用于估计潜在变量,并再次用于测试估计的潜在变量。当PCA估算潜在变量时,JackStraw可以通过低维主组件(PC)估计,可观察到的变量和潜在变量之间的统计测试对观察到的变量和潜在变量之间的关联。这一范围内导致识别与PC显着相关的变量。同样,诸如K-均值聚类,围绕MEDOIDS(PAM)和OTHERS的诸如K-均值聚类和others的无关聚类,在高维数据中找到相干组。通过测试数据和群集中心之间的关联,JackStraw估计了集群成员资格的统计意义。聚集成员身份,并应用于对Single细胞RNA-Seq(SCRNA-SEQ)中细胞身份的无监督评估。
(本文包含的信息仅供参考,如有更改,恕不另行通知。尽管在编写本文档时已采取一切预防措施,但其中可能包含技术上的不准确之处、遗漏和印刷错误,AMD 没有义务更新或以其他方式更正此信息。Advanced Micro Devices, Inc. 对本文档内容的准确性或完整性不做任何陈述或保证,并且不承担任何责任,包括对本文描述的 AMD 硬件、软件或其他产品的操作或使用不侵犯权利、适销性或适用性的默示保证。本文档不授予任何知识产权许可,包括默示的或通过禁止反言产生的许可。购买或使用 AMD 产品的条款和限制已在双方签署的协议或 AMD 的标准销售条款和条件中规定。
© 2023 NVIDIA Corporation 及其附属公司。保留所有权利。NVIDIA、NVIDIA 徽标、Base Command、BlueField、CUDA、DGX、DGX POD、DGX SuperPOD、Grace、Grace Hopper、Hopper、NVIDIA-Certified Systems、Spectrum、TensorRT 和 Triton 是 NVIDIA Corporation 及其附属公司在美国和其他国家/地区的商标和/或注册商标。其他公司和产品名称可能是与其相关的各自所有者的商标。2730427。9 月 23 日
• 舒尼替尼 (n=243) vs 安慰剂 (n=118) • 中期分析(最长随访 54 周):总生存率 HR = 0.49 • 对照组患者随后可改用舒尼替尼 → 84% 的患者改用 • 后期随访:ITT 分析:OS HR = 0.88,ICER = £77k 保序结构失效时间模型(带 g 估计):OS HR = 0.51,ICER = £32k → RPSFTM 被认为可以接受并推荐使用舒尼替尼
越来越多的研究表明,功能连接组具有个体特异性,因此可以视为大脑指纹;即能够在健康 [1] 和疾病 [2], [3] 的人群中识别个体。传统的方法是将大脑区域视为顶点,将区域对之间的区域时间过程的统计依赖性成对度量(即皮尔逊相关系数)视为边权重,从而构建功能连接组 (FC)。人们已经使用不同的神经成像方式研究了 FC 的指纹潜力,即脑电图 (EEG) [4], [5]、脑磁图 (MEG) [6], [7] 和功能性磁共振成像 (fMRI) [1], [8]。所有这些研究都有助于从大脑连接数据中实现单受试者水平的推断,即通过利用不同认知任务和静息状态下功能网络组织的个体属性 [9], [10],或通过将个体连接组特征与行为和人口统计分数联系起来 [1], [6], [7], [9]。然而,传统的功能连接组不仅捕捉到了神经活动之间的统计依赖性,也捕捉到了潜在噪声源的统计依赖性。此外,功能连接组的构造仅提供大脑动态的成对表示,例如通过将大脑视为二元组的组合。由于其简单性,这一假设是有益的,但它限制了对人类大脑网络中个体特征的研究。因此,已经提出了基于主成分重建 [9] 或特征空间嵌入 [10] 的功能连接组去噪补救措施,每种方法都需要从潜在空间中学习基于空间的功能连接组。