摘要 - 混乱,密集和染色环境中的运动产生是机器人技术中的一个核心话题,被视为多目标决策问题。当前的安全性和性能之间的权衡。一方面,反应性策略保证了对环境变化的快速响应,其风险次优行为。另一方面,基于计划的运动产生提供可行的轨迹,但是高计算成本可能会限制控制频率,从而限制安全性。为了结合反应性策略和计划的好处,我们提出了一种分层运动方法。此外,我们采用概率推理方法来形式化层次模型和随机优化。我们将这种方法视为随机,反应性专家政策的加权产品,在该策略中,计划用于适应任务范围内的最佳权重。这种随机优化避免了局部优点,并提出了可反应性计划,以发现混乱且致密的环境中的路径。我们在平面导航和7DOF操作中进行的广泛实验研究表明,我们提出的层次运动生成方法的表现优于近视反应性控制器和在线重新规划方法。其他材料可在https://sites.google.com/view/hipbi上找到。
摘要:在描述主动推理代理 (AIA) 时,“能量”一词可以具有两种不同的含义。一种是 AIA 利用的能量(例如,电能或化学能)。第二个含义是所谓的变分自由能 (VFE),这是一个统计量,它提供了意外的上限。在本文中,我们开发了前一个量——热力学自由能 (TFE)——及其与后者的关系的说明。我们在一个通用的量子信息理论公式中强调了这两者之间的必要权衡,以及这些权衡对生物接近其环境的方式的宏观影响。通过明确这种权衡,我们为从植物到捕食者的生物用来生存的不同代谢策略提供了理论基础。
由于复制越来越多的研究的复制,生物科学中的典型统计实践已被越来越受到质疑,其中许多研究被无效假设测试设计和P值解释的相对难度所困扰。贝叶斯推论代表了一种根本不同的假设检验方法,由于其易于解释和对先前假设的明确声明,因此获得了新的兴趣作为潜在的替代或对传统无效假设检验的补充。贝叶斯模型在数学上比等效频繁的方法更为复杂,这些方法历来将应用程序限制在简化的分析案例中。但是,随着计算能力的指数增加,概率分布采样工具的出现现在可以在任何数据分布下快速而强大的推断。在这里,我们介绍了在大鼠电生理和计算建模数据中使用贝叶斯推断在神经科学研究中使用贝叶斯推断的实用教程。我们首先是对贝叶斯规则和推理的直观讨论,然后使用来自各种神经科学研究的数据制定基于贝叶斯的回归和ANOVA模型。我们展示了贝叶斯推论如何导致对数据的易于解释分析,同时提供开源工具箱来促进贝叶斯工具的使用。
摘要 - 在过去的十年中,人工智能(AI)和Edge Computing(EC)的关键进步已导致Edgeai服务的发展,以提供对关键任务应用必不可少的智能和低潜伏期响应。但是,Edgeai服务对网络极端的扩展可能会面临挑战,例如负载波动,导致AI推断延迟以及对能源效率的担忧。本文提出了“模型交换”,其中Edgeai服务使用的模型将与另一个随时可用的模型交换,以便在运行时推理任务中实现成本和能源节省。ModelSwapper可以通过采用低成本算法技术来实现这一目标,该技术探讨了计算开销与模型准确性之间有意义的权衡。这样做,边缘节点通过用更简单的模型代替复杂模型来适应负载波动,从而满足所需的延迟需求,尽管不确定性较高。我们使用两种EDGEAI服务(对象检测,NLU)进行评估表明,ModelSwapper可以显着减少至少27%和68%的能量使用和推理延迟,而准确性仅降低了1%。索引术语 - 机器学习,边缘计算
摘要:受脑启发的计算机架构有助于嵌入式 AI 应用实现低功耗、低延迟的深度神经网络推理。硬件性能主要取决于推理过程中非零激活(即事件)的数量。因此,我们提出了一种新颖的事件抑制方法,称为 ELSE,该方法通过基于线的稀疏性探索来提高推理效率。具体而言,它利用激活图中相邻线之间的空间相关性来减少网络事件。与传统处理相比,ELSE 可将事件触发的计算量在各种网络架构中减少 3.14 ∼ 6.49 ×(用于对象检测)和 2.43 ∼ 5.75 ×(用于姿势估计)。此外,我们表明,将 ELSE 与其他事件抑制方法相结合可以显著提高空间抑制的计算节省量,或将时间抑制的状态内存占用量减少 2 × 以上。后者缓解了时间执行超出真实嵌入式平台资源限制的挑战。这些结果凸显了 ELSE 显著的事件抑制能力及其为 SOTA 方法提供补充性能增强的能力。
摘要。尽管大规模预处理的视觉模型(VLM)尤其是在各种开放式播放任务中的剪辑,但它们在语义细分中的应用仍然具有挑战性,从而产生了带有错误分段区域的嘈杂分段图。在本文中,我们仔细地重新调查了剪辑的架构,并将残留连接确定为降低质量质量的噪声的主要来源。通过对剩余连接中统计特性的比较分析和不同训练的模型的注意力输出,我们发现剪辑的图像文本对比训练范式强调了全局特征,以牺牲局部歧视,从而导致嘈杂的分割结果。在响应中,我们提出了一种新型方法,该方法是分解剪辑的表示形式以增强开放式语义语义分割的。我们对最后一层介绍了三个简单的修改:删除剩余连接,实现自我关注并丢弃馈送前进的网络。ClearClip始终生成更清晰,更准确的绘制图,并在多个基准测试中胜过现有的方法,从而确认了我们发现的重要性。
EE515:量子传感:机器学习,推理和信息单位:4时间:星期一,星期一2:00-3:50pm,位置:KAP 165讲师:Quntao Zhuang Office:PHE 606办公室:TBA办公时间:QZHUANG@USC.EDU CATALOG量子,量子信息,量子的基础,量级机械,量子的基础,量子的基础,量子的基础,量子的基础,量子,量子,量子,量子,量子,量子,量子,量子,量子量,量子量,量子和机器的基础,量子和机器的量度,量子和机器的量度为基础。课程描述是介绍量子传感的基础知识的4个单元课程---推理,信息和机器学习的量子理论。量子信息科学和工程在在计算,沟通和传感方面取得优于古典性能方面表现出了巨大的希望。传感是一个竞技场,量子技术可以在短期内实现用于实际应用的经典感应技术的优势。量子传感和计量学研究非经典资源来增强各种传感应用的测量表现。作为一个突出的例子,激光干涉仪重力波观测站(LIGO)将非经典挤压光注射到其米歇尔森干涉仪中,以超过由于激光射击噪声而超过标准量子限制(SQL)。除了LIGO外,量子计量学还在目标检测,显微镜,生物传感和相跟踪中得到了利用。最近,量子传感已在机器学习任务中发现了应用,例如使用智能量子传感器网络。本课程将介绍量子传感的理论基础,并在不同的实践感应场景中提供量子优势的规范示例。课程始于基本的量子力学,包括量子系统和以谐波振荡器建模的量子光学系统。然后,我们将涵盖经典推理和古典机器学习的基础知识,这是对此之后的量子版本的初步。最后,我们将讨论一些用于量子传感的物理系统。本课程将介绍基本的工具和方法,以建模和分析量子传感协议,并将其应用于现实示例。针对具有复杂线性代数知识的学生,本课程为学生提供了最新的量子传感概述,并为他们做好准备以进一步研究该主题。学习目标结束时,学生将能够
图形神经网络(GNN)已被广泛应用于不同域之间的变量应用。但是,最近的研究表明,GNN易受成员推理攻击(MIA)的影响,该攻击旨在推断该模型的培训数据中包括某些特定的数据样本。虽然大多数先前的MIA都集中在训练图内的单个节点和边缘的成员中,但我们引入了一种新型的成员推理攻击形式,称为结构成员推理攻击(SMIA),该攻击(SMIA)旨在确定一组特定的目标结构,例如某个特定目标结构,例如集团或多跳训练图中的特定目标结构。为了解决此问题,我们提出了新颖的黑盒SMIA攻击,这些攻击利用了目标GNN模型产生的推理的预测输出。我们的方法涉及培训三标签分类器,该分类器与影子训练相结合,有助于加入推理攻击。我们对三种代表性GNN模型和三个现实世界图数据集的广泛实验评估表明,我们提出的攻击始终超过三个基线方法,包括采用常规链接成员资格推理攻击来推断子图结构的方法。此外,我们设计了一种防御机制,将扰动引入节点嵌入,从而影响了目标模型的相应预测输出。我们的防御选择性地覆盖了节点床中的尺寸,这些尺寸对模型的准确性影响最小。我们的经验结果表明,我们的方法的防御效力与两种既定的防御技术相媲美,这些技术采用了差异隐私。此外,与现有的两种防御方法相比,我们的方法在防御强度和目标模型的准确性之间取得了更好的权衡。
本研讨会的主题是多种情况下统计推断任务的计算复杂性。这是一个相对较新且迅速发展的研究领域。数学统计和计算复杂性的领域已经存在很大程度上是彼此独立的:前者传统上研究了统计或信息限制,而后者主要集中于与恐怖分子(对抗性)造成的输入的组合问题,这些输入并不能准确地反映出数据问题的现实。直到最近十年,研究界才出现了致力于解决界面上的基本问题。我们简要介绍了为什么需要新观点。统计推断中的两个基本询问线长期以来一直是:(i)确定基本统计学(即信息理论)限制; (ii)找到有效的算法实现了这些限制。但是,对于许多结构化的推理问题,尚不清楚统计最佳性是否与有效的合并兼容。统计上最佳的估计器通常需要对可能的结构进行不可行的详尽搜索。相反,对于许多设置,我们知道的计算有效算法在统计学上是次优的,需要更高的信号强度或比理论上的信息更高的数据。这种现象既迷人又令人震惊。相反,实际上相关的基准是计算有效算法的基本统计限制。我们如何找到最佳的有效算法?表明,自数学统计开始以来所研究的这些问题的信噪比(或数据量)的信息理论限制并不是现代高维设置中实际上相关的基准。有效的算法无法达到统计限制时,据说问题具有统计计算差距。在许多观察到的情况下,差距可以很大,因此有效的算法需要的数据级数比理论上的信息要多。对统计计算差距的意识并不是什么新鲜事物,早期的工作表明了人工构建的学习问题中的差距[10,19,20],而最近的工作着重于统计和计算效率之间的算法[21、20、20、8、9]。现在,数十个重要的高维统计估计问题被认为具有不同的计算和统计限制。这些问题(例如,稀疏的线性回归或稀疏相检索[24,7,11,17])在实践中无处不在,并且在理论上进行了充分研究,但中央序列仍然存在:计算高效算法的基本数据限制是什么?在更基本的层面上,出于共同的原因而出现的这些统计计算差距是否存在?是否有希望建立一个广泛适用的理论,描述和解释统计计算权衡?
抽象生成的AI模型(例如GPT-4和稳定的扩散)在自然语言和图像任务中表现出强大而破坏性的功能。但是,将这些模型部署在分散环境中仍然具有挑战性。与传统的集中部署不同,从系统上保证了在完全分散的环境中AI模型服务的完整性,特别是在无信任的区块链上,既重要又困难。在本文中,我们提出了一种称为质量证明(POQ)的新推论范式,以使在区块链体系结构上的任意大型生成模型中部署。与基于验证推理程序(例如ZKML或OPML)的传统方法不同,我们的POQ范式着重于模型推理的结果质量。使用基于BERT的轻质跨编码器作为我们的基本质量评估模型,我们设计和实施PQML,这是对区块链现实世界中NLP生成模型推断的第一个实用协议,该模型针对流行的开源模型量身定制,例如Llama 3和Mixtral。我们的分析表明,我们的协议对生态系统中的对抗性但理性的参与者具有牢固的态度,在这种情况下,与行为良好的参与者相比,懒惰或不诚实的行为较少。验证质量评估的计算开销很小,即使仅使用CPU,也可以在几秒钟内完成质量检查。初步仿真结果表明,POQ共识以毫秒为单位生成,比任何现有方案都快1,000倍。