课程描述:本课程对定量方法和因果推断的基础提供了全面的介绍。通过将理论见解与现实世界的政策应用程序相结合,学生将通过使用统计软件Stata的动手实时编码会话获得实践技能(可通过King's Software Center免费下载)。该课程是为从事应用研究的学生而设计的,它鼓励参与者在“ BYO Recression Scars”课程中带来自己的工作进行讨论和协作改进。该课程的结尾是针对裁判裁判在定量分析中的批评的讲习班,为参与者做好了成功的学术出版物的准备。
基于摘要连接组的模型,也称为虚拟脑模型(VBM),已在网络神经科学中得到很好的确定,以研究各种大脑疾病的病理生理原因。在VBM中,个人的大脑成像数据的整合具有提高患者特异性的预测性,尽管即使在最新的蒙特卡洛采样中,贝叶斯对空间分布的参数的估计也仍然具有挑战性。VBM表示由噪声和网络输入驱动的潜在非线性状态空间模型,需要对广泛适用的贝叶斯估计的高级概率机器学习技术。在这里,我们提出了基于仿真的VBM(SBI-VBM)推断,并证明对时空和功能特征的训练深神网络可以准确估算脑疾病中的生成参数。系统使用大脑刺激为估计降解限量限制为较小连接子集的降解提供了有效的补救措施。通过将模型结构优先于数据,我们表明SBI-VBMS中的分层结构使推理更有效,精确和生物学上可行。这种方法可以通过快速,可靠地预测患者特异性脑疾病来广泛提高精度医学。
合适规模的 AI 计算 在快速发展的 AI 部署领域,“合适规模的计算”概念已成为 AI 推理的关键策略。这意味着精确校准计算资源以满足 AI 应用程序的需求,重点是实现性能、功耗和成本效率之间的最佳平衡。随着 AI 部署量不断激增,精简基础设施的必要性日益突出,需要采取一种全面的方法,满足延迟和吞吐量要求,同时精心管理与采购、数据中心基础设施、房地产、能耗、冷却和其他运营开销相关的成本。仅仅将更昂贵、耗电更大、专业化程度更狭窄的硬件投入 AI 无法满足所需规模的业务需求。
摘要:在描述主动推理代理 (AIA) 时,“能量”一词可以具有两种不同的含义。一种是 AIA 利用的能量(例如,电能或化学能)。第二个含义是所谓的变分自由能 (VFE),这是一个统计量,它提供了意外的上限。在本文中,我们开发了前一个量——热力学自由能 (TFE)——及其与后者的关系的说明。我们在一个通用的量子信息理论公式中强调了这两者之间的必要权衡,以及这些权衡对生物接近其环境的方式的宏观影响。通过明确这种权衡,我们为从植物到捕食者的生物用来生存的不同代谢策略提供了理论基础。
Alveo™ V70 加速器卡是首款利用 AMD XDNA™ 架构和 AI 引擎的 AMD Alveo 量产卡,为针对云和边缘应用的 CNN、RNN 和 NLP 加速提供紧密集成的异构计算平台。V70 旨在成为 AMD 产品组合中最节能的 AI 推理卡,针对视频分析和自然语言处理工作负载进行了优化,并提供行业标准框架支持,直接编译在 TensorFlow 和 PyTorch 中训练的模型。该卡是基于 PCIe® 的半高、半长、单插槽卡,支持服务器 PCIe 扩展槽中闭环热控制的被动冷却。该卡配备 7nm Versal® ACAP 设备,该设备具有集成的 AI 引擎核心,可补充自适应和标量引擎和 16 GB DDR4 内存。V70 具有低功耗和小尺寸外形,有助于降低每个 AI 通道的成本,并为视频应用提供高通道密度。
我们的测试表明,使用美光 DDR5 和第四代英特尔至强处理器,以及英特尔® 高级矩阵扩展 (AMX)(一种用于在 CPU 上进行深度学习、训练和推理的新型内置加速器),可为 AI 应用提供必要的计算能力、内存带宽和容量。与 DDR4-3200 相比,美光 DDR5-4800 的内存带宽提高了 2 倍。除了提高数据速率外,美光 DDR5 还增加了两倍的存储体组、突发长度 (BL16) 和改进的刷新方案,可提供比 DDR4-3200 高得多的有效带宽,超出了更高数据速率本身所能实现的效果。与第三代英特尔至强 8380 CPU 相比,最新的第四代英特尔至强 8490H CPU 的核心数量增加了 50%,并改进了缓存架构(即速度和容量),以提高 AI 推理的性能。为了增加 CPU 核心数量,美光 DDR5 增加了突发长度,每个 DIMM 启用两个独立通道,使服务器平台可用的内存通道增加一倍,以实现更多并发操作。
我们考虑香农相对熵的扩展,称为 f -散度。三个经典的相关计算问题通常与这些散度有关:(a) 根据矩进行估计,(b) 计算正则化积分,和 (c) 概率模型中的变分推断。这些问题通过凸对偶相互关联,并且对于所有这些问题,在整个数据科学中都有许多应用,我们的目标是计算上可处理的近似算法,这些算法可以保留原始问题的属性,例如潜在凸性或单调性。为了实现这一点,我们推导出一系列凸松弛,用于从与给定特征向量相关的非中心协方差矩阵计算这些散度:从通常不易处理的最佳下限开始,我们考虑基于“平方和”的额外松弛,现在它可以作为半定程序在多项式时间内计算。我们还基于来自量子信息理论的谱信息散度提供了计算效率更高的松弛。对于上述所有任务,除了提出新的松弛之外,我们还推导出易于处理的凸优化算法,并给出了多元三角多项式和布尔超立方体上的函数的说明。
越来越多的研究表明,功能连接组具有个体特异性,因此可以视为大脑指纹;即能够在健康 [1] 和疾病 [2], [3] 的人群中识别个体。传统的方法是将大脑区域视为顶点,将区域对之间的区域时间过程的统计依赖性成对度量(即皮尔逊相关系数)视为边权重,从而构建功能连接组 (FC)。人们已经使用不同的神经成像方式研究了 FC 的指纹潜力,即脑电图 (EEG) [4], [5]、脑磁图 (MEG) [6], [7] 和功能性磁共振成像 (fMRI) [1], [8]。所有这些研究都有助于从大脑连接数据中实现单受试者水平的推断,即通过利用不同认知任务和静息状态下功能网络组织的个体属性 [9], [10],或通过将个体连接组特征与行为和人口统计分数联系起来 [1], [6], [7], [9]。然而,传统的功能连接组不仅捕捉到了神经活动之间的统计依赖性,也捕捉到了潜在噪声源的统计依赖性。此外,功能连接组的构造仅提供大脑动态的成对表示,例如通过将大脑视为二元组的组合。由于其简单性,这一假设是有益的,但它限制了对人类大脑网络中个体特征的研究。因此,已经提出了基于主成分重建 [9] 或特征空间嵌入 [10] 的功能连接组去噪补救措施,每种方法都需要从潜在空间中学习基于空间的功能连接组。
量子测量理论是围绕密度矩阵和可观测量建立的,而热力学定律则以热机和冰箱等过程为基础。量子热力学的研究融合了这两个不同的范式。在本文中,我们重点介绍了量子过程矩阵作为描述量子领域热力学过程的统一语言的用法。我们在量子麦克斯韦妖的背景下通过实验证明了这一点,其中通常研究两个主要量:平均功提取 ⟨ W ⟩ 和功效 γ,后者衡量反馈操作使用获得的信息的效率。利用量子过程矩阵工具,我们为这两个量开发了最佳反馈协议,并在超导电路 QED 装置中通过实验研究它们。
摘要 我们考虑香农相对熵的扩展,称为 f -散度。三个经典的相关计算问题通常与这些散度有关:(a) 根据矩进行估计,(b) 计算正则化积分,以及 (c) 概率模型中的变分推断。这些问题通过凸对偶相互关联,并且对于所有这些问题,在整个数据科学中都有许多应用,我们的目标是计算上可处理的近似算法,这些算法可以保留原始问题的属性,例如潜在凸性或单调性。为了实现这一点,我们推导出一系列凸松弛,用于从与给定特征向量相关的非中心协方差矩阵计算这些散度:从通常不易处理的最佳下限开始,我们考虑基于“平方和”的额外松弛,现在它可以作为半定程序在多项式时间内计算。我们还提供了基于量子信息理论的谱信息散度的计算效率更高的松弛方法。对于上述所有任务,除了提出新的松弛方法外,我们还推导出易于处理的凸优化算法,并给出了多元三角多项式和布尔超立方体上的函数的说明。