量子计算理论的一个基本结果,即“安全存储原理”,表明总是有可能采用量子电路并产生一个等效电路,该电路在计算结束时进行所有测量。虽然这个过程是时间高效的,这意味着它不会在门数量上引入大量开销,但它使用了额外的辅助量子比特,因此通常不是空间高效的。很自然地,人们会问是否有可能在不增加辅助量子比特数量的情况下消除中间测量。我们通过展示一种同时具有空间效率和时间效率的消除所有中间测量的程序对这个问题给出了肯定的答案。特别是,这表明空间有界量子复杂度类的定义对于允许或禁止中间测量具有鲁棒性。我们方法的一个关键组成部分(可能具有独立意义)涉及表明许多标准线性代数问题的良好条件版本可以由量子计算机在比传统计算机可能占用的更少空间中解决。
使用量子物理学应用的语义和神经网络预测研究趋势,M。Krenn,A。Zeilinger,PNAS,PNAS 117(4)1910-1916(2020)
目标 成功完成与此认证相关的教育和考试部分后,考生将获得以下方面的知识和理解。• 人工智能的含义、目的、范围、阶段、应用和影响 机器学习和深度学习的基本概念 • 监督、半监督和无监督学习之间的区别 机器学习工作流程以及如何有效地实施这些步骤 • 性能指标的作用以及如何识别其关键方法 • 能够完全掌握人工智能、机器学习、大数据之间的区别以及它们是如何相互关联的 • 能够学习和起草人工智能算法 • 能够在聊天机器人上做一个简单的演示 • 能够理解业务问题并将其与人工智能和大数据联系起来。这些元素如何影响业务目标受众:• 渴望成为人工智能工程师或机器学习工程师的开发人员 • 领导分析师团队的分析经理 • 希望获得人工智能算法专业知识的信息架构师 • 希望从事机器学习或人工智能工作的分析专业人员 • 希望在人工智能或机器学习领域建立职业生涯的毕业生
量子误差缓解 (QEM) 对于嘈杂的中型量子 (NISQ) 设备至关重要。虽然大多数传统的 QEM 方案都假设离散门电路,噪声出现在每个门之前或之后,但这些假设不适合描述可能具有强门依赖性和复杂非局部效应的实际噪声,以及模拟量子模拟器等通用计算模型。为了应对这些挑战,我们首先扩展了场景,其中每个计算过程(无论是数字还是模拟)都由连续时间演化描述。对于来自工程汉密尔顿量缺陷或额外噪声算子的噪声,我们表明它可以通过随机 QEM 方法有效抑制。由于我们的方法仅假设精确的单量子位控制,因此它适用于所有数字量子计算机和各种模拟模拟器。同时,可以利用理查森外推法来抑制缓解过程中的错误。当我们在能量松弛和失相噪声下使用各种哈密顿量以及具有额外双量子比特串扰的数字量子电路对我们的方法进行数值测试时,我们发现模拟精度提高了 2 个数量级。我们评估了我们方案的资源成本,并得出结论,使用 NISQ 设备进行精确量子计算是可行的。
使用量子物理学应用的语义和神经网络预测研究趋势,M。Krenn,A。Zeilinger,PNAS,PNAS 117(4)1910-1916(2020)
对支持高性能的尖端材料的需求在体育行业中不断增加,这就是为什么轻巧,高度刚性的碳纤维多年来一直是一种受欢迎的材料的原因。自1970年代以来,Teijin一直在开发用于运动应用的碳纤维和碳纤维中间材料,包括钓鱼杆,高尔夫轴,曲棍球,曲棍球和网球球拍。teijin现在决定加速其使用公司专有的碳纤维技术的体育应用中碳纤维中间材料的开发,该材料部署在飞机和卫星中。tenax以拉丁语命名,以强硬或顽强的态度命名,其中包括具有出色坚韧性的中级材料,是钢的强度的五倍,但重量只有四分之一。关于Teijin Group Teijin(TSE:3401)是一个技术驱动的全球集团,在环境价值领域提供高级解决方案;安全,安全和灾难;和人口变化和增强健康意识。最初于1918年建立为日本的第一家人造丝制造商,已演变成一个独特的企业,涵盖了三个核心业务领域:高性能材料,包括Aramid,碳纤维和复合材料,以及树脂和塑料加工,薄膜,聚酯纤维和产品转换;医疗保健包括骨/关节,呼吸道和心血管/代谢疾病的药品和家庭医疗设备,护理和症状前医疗保健;它包括用于医疗,公司和公共系统的B2B解决方案,以及包装软件以及用于数字娱乐的B2C在线服务。深深地致力于其利益相关者,旨在成为支持未来社会的公司。该集团由170多家公司组成,在全球20个国家 /地区拥有约20,000名员工。Teijin在2020年3月31日的财政年度中发布了8537亿(80亿美元)的JPY销售额(80亿美元)和1,0042亿美元的总资产(94亿美元)。新闻联系公司通讯Teijin Limited pr@teijin.co.jp
许多量子算法都利用了辅助位,即用于在计算过程中存储临时信息的额外空闲位,这些信息通常在使用后恢复到其原始状态。辅助位有多种用途,例如减少总执行时间。在某些情况下,它们可以渐进地改善电路分解的深度。这凸显了量子程序中一个重要的时空权衡——我们以辅助位的形式花费额外的空间,以减少输入电路的深度。真正的量子机器的量子比特数量有限,因此充分利用它们以更快地计算更大、更有用的问题非常重要。最近,[1] 证明了高维量子比特可以作为某些电路元件中辅助位的替代品,效果很好。虽然量子电路通常以量子比特上的二进制逻辑门来表示,但在许多量子技术中,这种两级抽象是肤浅的。超导量子比特 [2] 和捕获离子 [3] 具有无限多种可能的状态,而较高的状态通常被抑制。不幸的是,通过访问这些状态,计算会受到更多种类的错误的影响,实际上错误类型的数量在计算基数中呈二次方增长 [1]。但是,如果正确使用量子比特状态,则获得的好处会超过这种成本。具体来说,我们在计算过程中暂时使用量子比特状态,同时保持电路的二进制输入和输出。
这可能是最重要的扑克技巧,可直接提高胜率。要想在扑克中获胜,你必须掌握的概念之一是牌桌选择。在扑克中获利的关键是与技能不如你的玩家为伍。因此,牌桌选择可能是你在牌桌上取得成功的最大因素。善于选择要坐哪个座位可能意味着你是赌注中的顶级赢家还是平庸的收支平衡玩家之间的区别。在任何特定级别上,收入最高的人不一定是最好的玩家。那些始终选择最有利于获利的座位的人才是出类拔萃并保持最高胜率的人。
图2。光子能量(8.5-11 eV)和时间(0-30 ms)在450 K,7500 Torr和[O 2] = 7×10 17 cm -3的CL引入DEE的氧化中的质谱(0-30 ms)。由DEE氧化形成的物种引起的峰通过其M / Z标记。未显示由DEE产生的耗尽的离子峰。星号标记了o 2 +峰是由痕量的残留量高能量辐射电离O 2引起的,这在我们的实验中以很高的浓度存在。匕首标记了m / z 117的虚拟光解诱导的伪影,这不会影响其他峰的测量。