摘要:微环境力学在损伤后的形态发生和免疫反应中起着至关重要的作用,但由于脊髓损伤 (SCI) 中脆弱的机械强度和氧化性生理环境阻碍了对微环境力学的探索。在这里,我们设计了具有与神经组织匹配的机械性能的对映体肽自组装水凝胶,以通过立体构象识别和随之而来的蛋白质亲和力差异持续操纵细胞膜张力和机械转导。D-对映体水凝胶诱导的细胞内张力松弛激活星形胶质细胞中的神经发生和 ECM 重塑,抑制促炎并促进小胶质细胞中的促再生,这显著促进了大鼠严重 SCI 模型中的神经保护和功能恢复。与非神经细胞相反,细胞内张力松弛诱导的形态发生可能是神经特性,因为下游的机械信号是由由此产生的神经源性形态变化激活的。总体而言,诱导细胞内张力松弛是促进神经再生的潜在有效策略。
抗菌肽 (AMP) 选择性地识别和摧毁微生物,与传统抗生素不同,它在对宿主细胞无害方面具有独特优势。AMP 具有阳离子特性和两亲性,这有助于它们与微生物膜相互作用。AMP 在解决感染方面的关键作用基于两种主要机制:直接破坏病原体和免疫调节。AMP 通过适应性免疫扩大其治疗潜力。最后,通过增强先天性和适应性免疫,AMP 通过破坏微生物膜、通过促进 T 淋巴细胞和 B 淋巴细胞的激活、中性粒细胞和巨噬细胞刺激来溶解外来细胞,从而促进病原体的消除。由于 AMP 具有多种作用方式/多任务处理,因此产生耐药性的可能性较低。由于最难治疗的感染是细胞内细菌感染,而抗生素对这种感染几乎无效,因此 AMP 正成为一种有希望的治疗替代方法。总之,同一种 AMP 可以以多种结构和功能形式表达,从而提高其适应性和对抗各种微生物攻击的有效性。抗菌肽 (AMP) 是免疫系统的重要组成部分,能够选择性地识别和消灭寄生在宿主体内的微生物。与传统抗生素不同,AMP 在靶向病原体而不对宿主细胞造成伤害方面具有独特优势。这些短肽通常由 12 到 50 个氨基酸组成,由于含有大量带正电的氨基酸,因此具有阳离子特性。这使它们能够表现出两亲行为,具有促进与微生物膜相互作用的亲水和疏水区域。AMP 不仅因其杀菌特性而至关重要,还因其调节免疫反应的能力而至关重要,从而增强先天性和适应性免疫。AMP 通过两种主要机制在解决感染方面发挥着关键作用:直接杀死病原体和免疫调节。前者通过破坏微生物膜导致细胞裂解来实现,而后者则涉及刺激中性粒细胞和巨噬细胞等免疫细胞,从而加剧炎症并加速病原体清除。最近的研究表明,AMP 还会影响适应性免疫,促进 T 和 B 淋巴细胞的激活,从而扩大其治疗潜力。重要的是,由于 AMP 的作用方式多样且同时发生,因此产生耐药性的可能性较低。最难治疗的感染之一是细胞内细菌感染,病原体在宿主细胞内复制。抗生素在这些情况下通常会失败,因为它们穿透宿主细胞的能力有限,而且抗生素耐药性问题日益严重,这会阻止抗生素的治疗浓度在受感染细胞内达到有效水平。因此,这些感染可能会持续并变成慢性感染,从而逃避标准抗生素治疗。相反,AMP 正在成为治疗细胞内感染的一种有前途的替代方案。总之,同一种 AMP 可以表现出多种结构和功能特性,表现出高度的多功能性。这些重叠的特性通常会增强它们对各种微生物威胁的适应性和有效性。
近年来,靶向嵌合体(Protac)技术的蛋白水解已成为通过利用细胞自己的破坏机制来清除与疾病相关蛋白质的最有希望的方法之一。要获得感兴趣的蛋白质(POI)的成功降解,杂功能的Protac分子必须首先穿透到细胞中,然后靶向靶标和POI-PROTAC-E3连接酶复合物的靶标和形成。基于这种理解,对细胞渗透性和细胞靶标的评估评估对于评估Protac候选物的疗效至关重要。Protac分子可以分类为非共价和共价,并且可以将共价Protac进一步分为不可逆的和可逆的共价。在这里,我们提出了一个高通量测定法,以使用激酶结合测定和纳米伯特目标参与平台定量测量其细胞内积累来确定不同类型的BTK Protac。
在脆弱的发育时期接触铅 (Pb) 等环境化学物质会导致晚年健康出现不良后果。人类队列研究表明,发育期 Pb 暴露与晚年阿尔茨海默病 (AD) 发病之间存在关联,动物研究的结果进一步证实了这一观点。然而,发育期 Pb 暴露与 AD 风险增加之间的分子通路仍然难以捉摸。在这项工作中,我们使用人类 iPSC 衍生的皮质神经元作为模型系统来研究 Pb 暴露对人类皮质神经元中 AD 样发病机制的影响。我们将来自人类 iPSC 的神经祖细胞暴露于 0、15 和 50 ppb Pb 中 48 小时,去除含 Pb 的培养基,并进一步将它们分化为皮质神经元。免疫荧光、蛋白质印迹、RNA 测序、ELISA 和 FRET 报告细胞系用于确定分化皮质神经元中 AD 样发病机制的变化。将神经祖细胞暴露于低剂量 Pb,模拟发育暴露,可导致神经突形态改变。分化神经元表现出钙稳态、突触可塑性和表观遗传景观的改变,以及 AD 样发病机制标志物升高,包括磷酸化 tau、tau 聚集体和 A β 42/40。总之,我们的研究结果为发育性 Pb 暴露引起的 Ca 失调提供了证据基础,这是一种合理的分子机制,可解释发育性 Pb 暴露人群中 AD 风险的增加。
3。LindströmK,Lindblad F,Hjerna。早产和注意力缺陷/多动障碍。儿科。2011; 127:858-865。4。ertürkE,işıkü,sirin fb。ADHD中血清VEGF,IGF-1和HIF-1α水平的分析。 J Atten Disord。 2023; 28:58-65。 5。 Swanson JM,Kinsbourne M,Nigg JT等。 注意缺陷/多动症脑成像,分子遗传和环境因素以及多巴胺假说的病因学亚型。 Neuropsychol Rev. 2007; 17:39-59。 6。 Halperin JM,BédardAV,Curchack-Lichtin J. ADHD的预防性干预措施神经发育的观点。 神经疗法。 2012; 9:531-541。 7。 Galvez-Contreras A,Campos-OrdoñezT,González-CastañedaR等。 自闭症和注意力缺陷/多动症障碍中生长因子的改变。 前部精神病学。 2017; 8:126。 8。 Arnsten AF,Pliszka Sr。儿茶酚胺对与注意力缺陷/多动障碍和相关疾病的治疗相关的前额叶皮质功能的影响。 Pharmacol Biochem行为。 2011; 99:211-216。 9。 Wilens TE,Faraone SV,Biederman J.成人的注意力缺陷/多动症。 JAMA。 2004; 292:619。 10。 Huang X,Wang M,Zhang Q等。 谷氨酸的作用ADHD中血清VEGF,IGF-1和HIF-1α水平的分析。J Atten Disord。2023; 28:58-65。5。Swanson JM,Kinsbourne M,Nigg JT等。病因学亚型。Neuropsychol Rev.2007; 17:39-59。 6。 Halperin JM,BédardAV,Curchack-Lichtin J. ADHD的预防性干预措施神经发育的观点。 神经疗法。 2012; 9:531-541。 7。 Galvez-Contreras A,Campos-OrdoñezT,González-CastañedaR等。 自闭症和注意力缺陷/多动症障碍中生长因子的改变。 前部精神病学。 2017; 8:126。 8。 Arnsten AF,Pliszka Sr。儿茶酚胺对与注意力缺陷/多动障碍和相关疾病的治疗相关的前额叶皮质功能的影响。 Pharmacol Biochem行为。 2011; 99:211-216。 9。 Wilens TE,Faraone SV,Biederman J.成人的注意力缺陷/多动症。 JAMA。 2004; 292:619。 10。 Huang X,Wang M,Zhang Q等。 谷氨酸的作用2007; 17:39-59。6。Halperin JM,BédardAV,Curchack-Lichtin J.ADHD的预防性干预措施神经发育的观点。神经疗法。2012; 9:531-541。7。Galvez-Contreras A,Campos-OrdoñezT,González-CastañedaR等。自闭症和注意力缺陷/多动症障碍中生长因子的改变。前部精神病学。2017; 8:126。8。Arnsten AF,Pliszka Sr。儿茶酚胺对与注意力缺陷/多动障碍和相关疾病的治疗相关的前额叶皮质功能的影响。 Pharmacol Biochem行为。 2011; 99:211-216。 9。 Wilens TE,Faraone SV,Biederman J.成人的注意力缺陷/多动症。 JAMA。 2004; 292:619。 10。 Huang X,Wang M,Zhang Q等。 谷氨酸的作用Arnsten AF,Pliszka Sr。儿茶酚胺对与注意力缺陷/多动障碍和相关疾病的治疗相关的前额叶皮质功能的影响。Pharmacol Biochem行为。2011; 99:211-216。9。Wilens TE,Faraone SV,Biederman J.成人的注意力缺陷/多动症。JAMA。 2004; 292:619。 10。 Huang X,Wang M,Zhang Q等。 谷氨酸的作用JAMA。2004; 292:619。10。Huang X,Wang M,Zhang Q等。 谷氨酸的作用Huang X,Wang M,Zhang Q等。谷氨酸的作用
细胞内运输是一个严格调节的膜动力学过程,可促进细胞隔室之间的cargos交换,使蛋白质,脂质和其他大分子能够到达其亚细胞的目的地,以便他们执行其功能。膜动力学对于细胞器的生物发生和稳态至关重要,并且证据表明,其在人类病理生理学中的重要性是,有340多种单基因疾病是由细胞内贩运机器的改变引起的。近年来,我们对细胞器的生物发生,它们的相互作用以及对细胞外环境或压力的功能适应的理解已导致膜动力学和细胞内运输位于稳态细胞和组织过程的中心。因此,通过开发新的技术方法和实验模型,阐明膜动力学和细胞内运输的细胞和分子机制以及在人体病理学中如何影响它们至关重要。在此研究主题中,Cao等。提供了一个新的例子,说明细胞内贩运的改变是人类疾病发病机理的关键决定因素。在他们的原始研究文章中,作者表明,引起色素性视网膜炎(RP)的某些显性突变(RHO)中的某些显性突变通过隔离内质网(ER) - )介导的野生型Rho Rho受体来发挥其致病作用。这些致病性突变体会损害野生型受体的膜运输和正常定位,同时有利于其与ER相关的降解(ERAD)。具有显性阴性功能的这种突变可能部分解释了由蛋白质折叠和ER保留为特征的Rho介导的RP过程。对膜运输的研究可以阐明潜在的诊断和预后标志物,以促进鉴定新的潜在治疗靶标和策略。在他们的病例对照研究中,Qadri等。使用了一种比较蛋白质组学方法来鉴定在非糖尿病或糖尿病性中风受试者的血清细胞外囊泡(EV)中差异表达的蛋白质。例如,来自糖尿病中风患者的EV富含与补体系统功能相关的组件,
摘要:创伤性脊髓损伤(SCI)是一种威胁生命和改变生命的状况,导致感觉运动和自主性障碍使人衰弱。尽管创伤性SCI的临床管理取得了重大进展,但由于缺乏有效的疗法,许多患者继续遭受痛苦。对脊髓的初始机械损伤导致一系列二次分子过程和免疫,血管,神经胶质和神经元细胞种群中的细胞内信号传导级联反应,从而进一步损害受伤的脊髓。这些细胞内的级联反应呈现出令人鼓舞的翻译与治疗干预措施,因为它们在真核进化中的无处不在和保护性高。迄今为止,许多治疗剂已显示这些途径在改善SCI后恢复方面的直接或间接介入。然而,创伤性SCI的复杂,多方面和异质性的性质需要更好地阐明潜在的次级细胞内信号传导级联,以最大程度地减少脱靶效应并最大程度地提高有效性。转录和分子神经科学的最新进展为受伤的脊髓中这些途径提供了更仔细的表征。这篇叙事评论文章旨在调查MAPK,PI3K-AKT-MTOR,Rho-Rock,NF-κB和Jak-STAT信号级联,此外还提供了有关创伤性SCI后这些次级细胞内途径的参与和治疗潜力的全面概述。
图 4 . (A) 对表达逆转录子 Eco2 (67 nt) 或 4LE-v1 至 v4 (126 nt) 的细胞中提取的 RT-DNA 进行变性 PAGE 分析。基因组编码的逆转录子 Eco1 (90 nt) 作为内部控制。标记物 M1 是 4LE- v4 的化学合成 DNA 版本。(B) 通过长度标准化荧光带强度分析确定逆转录子 Eco2 (67 nt) 和 4LE 变体相对应的 RT-DNA 相对于内源性 Eco1 的富集倍数。所示数据来自 n = 3 个技术重复。(C) 用 DFHBI-1T 进行大量体内荧光测量。配对 t 检验,诱导与未诱导:Eco2,p = 0.86;4LE-v1,p = 0.27;4LE-v2,p = 0.003;4LE-v3,p = 0.007; 4LE-v4,p = 0.005;n = 3 个生物学重复。(D)表达 4Lettuce 位置变体的 DFHBI-1T 染色细胞的流式细胞术分析。153
摘要:由于广泛的抗菌耐药性,微生物感染的治疗变得越来越艰巨。某些传染性细菌侵入并局部局部在宿主细胞内,保护细菌免受抗菌治疗和宿主的免疫反应,这一事实进一步加剧了治疗挑战。为了在细胞内生存中生存,这种细菌部署了与宿主细胞受体相似的表面受体,以隔离铁,这是一种从宿主铁结合蛋白(尤其是乳酸铁蛋白和转移蛋白)中的毒力的必不可少的营养素。在这种情况下,我们旨在靶向巨噬细胞和细菌表达的乳铁蛋白受体。因此,我们准备并表征了乳铁蛋白纳米颗粒(LF-NP),其中载有抗菌天然生物碱,小berberine或sanguinarine的双重药物组合,以及万古霉素或咪毕林。我们观察到,分化的THP-1细胞对药物载荷的LF-NP摄取增加,荧光细胞比例最高为90%,在存在游离乳铁蛋白的情况下,荧光细胞的摄取量增加到约60%,表明LF-NPS的靶向能力。与游离药物组合相比,封装的抗生素药物鸡尾酒有效清除了金黄色葡萄球菌(纽曼菌株)。然而,封装的药物和游离药物都表现出对难以治疗的脓肿(光滑变体)的抑菌作用。总而言之,这项研究的结果证明了乳铁蛋白纳米颗粒对靶向抗生素药物鸡尾酒的靶向递送的潜力。关键字:细胞内细菌,乳铁蛋白纳米颗粒,靶向药物递送,药物组合,纳米医学