局部重复是在小区域内发生的对称元素的出现(以100 bp为单位)。所有四种局部重复都可以参与特殊的DNA结构的形成 - 最著名的是十字形,可以通过倒重复序列形成。镜面重复序列可以形成非常不同的结构:分子内三链DNA,也称为triplex DNA和H-DNA [8]。加上三链部分,Triplex DNA还由一个单链部分组成,可以与另一个DNA混合;这被认为是同性重组的可能机制[21]。也存在与直接重复序列相关的特殊DNA结构,并且也存在重复的重复。直接重复可以形成所谓的滑动链DNA(S-DNA),这可能会导致框架移动muta-
此类反应的立体控制已被积极研究,最典型的研究重点是 C=C 键两侧的立体分化(方案 1A)。[2] 碳(亲)亲核试剂,如 1,3-二羰基,也参与核钯化,尽管此类反应研究较少。1965 年,Tsuji 描述了 1,5-环辛二烯与二甲基丙二酸钠的计量碳钯化的早期例子。Holton 和 Hegedus 后来证明了计量碳钯化的合成效用。[3] 21 世纪初,Widenhoefer 报道了一系列关于 1,3-二羰基部分和烯烃的分子内氧化还原中性环化的开创性研究。[4] 2016 年,我们的实验室描述了非共轭烯烃与各种碳(亲)亲核试剂的底物导向烃功能化。 [5] 何立、彭立和陈立最近发现了一种单齿手性噁唑啉配体,可以使这种转化对内部烯烃具有对映选择性。[6]
摘要:由于传感器材料和光学波导等实用应用,有机发光的固体材料引起了很多关注。我们以前已经报道过,逆类型日志甲观在晶体中表现出强大的发射,而不会引起聚集引起的淬火。但是,排放颜色仅限于绿色。为了调整发射颜色,在这项工作中,我们新合成具有缩短的π-共轭长度或极性取代基的逆类型日志甲乙烯,并研究了其在溶液和晶体中的荧光性能。晶体根据分子结构表现出各种发射颜色,从蓝色,绿色,黄色到红色。除了缩短的π连接长度和分子内电荷转移特征外,还通过分子间相互作用(例如CH-π相互作用)诱导了晶体的发射颜色变化。
摘要:地下合成已成为一种有力的策略,用于制造原子上精确的石墨烯纳米骨(GNR)的前所未有的形式。但是,锯齿形GNR(ZGNR)的地下合成仅取得了有限的成功。在此,我们报告了2,7-二溴-9,9' - 苯甲酰基的合成和表面反应,作为朝向π-延伸ZGNRS的前体。通过扫描隧道显微镜和高分辨率非接触原子力显微镜的表征清楚地证明了烟碱融合的ZGNR的形成。独特的骨骼重排,可以通过分子内多尔 - alder cycloadition来解释。对蒽接受ZGNR的电子特性的理论计算显示自旋极晶状体和0.20 eV的狭窄带隙。关键字:地下合成,石墨烯纳米替恩,表面反应,重排,边缘状态■简介
Hammett 对功能化二酮吡咯并吡咯 (DPP) 体系中取代基效应的分析:光电特性和分子内电荷转移效应 Gabriel Monteiro-de-Castro; a Itamar Borges Jr. a,b,* Instituto Militar de Engenharia (IME),Praça Gen. Tibúrcio 80,里约热内卢,RJ,22290-270,巴西。 a Departamento de Química, IME b Programa de Pós-Graduação em Engenharia de Defesa, IME * 电子邮件:itamar@ime.eb.br 摘要 二酮吡咯并吡咯 (DPP) 系统在不同的有机电子器件中具有广阔的应用前景。在这项工作中,我们研究了 20 种不同的取代基对 DPP 基衍生物作为有机光伏 (OPV) 器件中的供体 (𝐷) 材料的光电特性的影响。为此,我们采用了 Hammett 理论,该理论量化了给定取代基的电子供体或吸电子特性。基于机器学习 (ML) 的 𝜎 # , 𝜎 $ , 𝜎 #
TPE-IP通过组装四苯基乙烯(TPE)和咪唑吡啶(IP)单位,具有弱推力分子结构和螺旋桨样构象,这些构象通过各种溶液和理论计算中的荧光发射证实。tpe-IP显示由于聚集态的分子运动被抑制的分子运动,汇总诱导的增强发射(AIEE)活性。有趣的是,TPE-IP在各种溶剂中表现出双波段荧光发射,源自局部和分子内电荷转移态。通过研磨和加热,TPE-IP提出了可逆的机械化处理,并伴随着深蓝色和绿色荧光之间的过渡。TPE-IP显示出高对比度的酸色素,但对HCl,CF 3 COOH和CH 3 COOH烟雾的反应不同。同时,可逆的酸变色可以通过HCl/CH 3 COOH和ET 3 N烟雾完成,但不能用于CF 3 COOH和ET 3 N烟雾。终于但并非最不重要的一点是,TPE- IP有可能应用于反击和信息加密领域。
方案 1 。Fe-氧介导的烯烃氧化。Fe-氧介导的烯烃氧化通常会生成相应的环氧产物。以苯乙烯 (1) 为模型底物,P450 催化的烯烃环氧化(环氧化物途径,紫色)和反马氏氧化(羰基途径,橙色)的拟议催化循环,首先形成铁-氧复合物,称为化合物 I (Cpd I)。第一个 C–O 键形成 (TS1) 生成短寿命自由基中间体 (Int-1),该中间体通过非常快速的第二个 C–O 键形成步骤 (TS2) 直接转化为环氧产物 (2)。这两个 C–O 键形成步骤通常以立体特异性方式进行,可能分步发生(当形成浅反应性自由基中间体时没有差向异构化)或以协同方式发生。另一种逐步反马氏氧化(羰基途径)被认为是通过分子内电子转移发生的,产生高反应性的碳正离子中间体(Int2)。随后的 1,2-氢化物迁移(TS3)产生羰基产物醛 3。
摘要:确定寡聚受体(OAS)的分子构象及其对分子填料的影响对于理解其所得聚合物太阳能电池(PSC)的光伏性能至关重要,但尚未得到很好的研究。在此,我们合成了两个二聚体受体材料,dibp3f-se和dibp3f-s,它们分别通过硒和噻吩桥接了Y6衍生物的两个段。理论仿真以及实验1D和2D NMR光谱研究证明,两个二聚体都表现出除S-或U形的相对词以外的O形构象。值得注意的是,这种O形构象可能受到独特的“构象锁定”机制的控制,这是由于其在二聚体内的两个末端组之间的分子内π -π相互作用加剧而产生的。基于Dibp3F-SE的PSC提供的最大效率为18.09%,表现优于基于DIBP3F-S的细胞(16.11%),并且在基于OA的PSC的最高效率中排名。这项工作展示了一种轻松获得OA构象的方法,并突出了二聚体受体对高性能PSC的潜力。
可控制发光颜色的可光控发光分子开关被认为是智能和发光材料之间的理想整合。剩余的挑战是将良好的发光特性与多种波长转化相结合,尤其是当在形成良好固定纳米构造的单个分子系统中构建时。在这里,我们报告了一个π扩展的光成色分子光电开关,该开关允许全面成就,包括广泛的发射波长变化(宽240 nm,400 - 640 nm),高光相异构范围(95%)和纯发射颜色(纯最高宽度)。我们采用调节合成和构造中分子内电荷转移的有利机制,并进一步通过简单的光控制实现了全颜色的发射。基于此,均具有光活化的抗相互作用功能和自我搜索的Photriting Fimm。这项工作将为智能光学材料的设计提供深入的了解。
激子淬火。[10]研究还致力于开发带有红移排放的有机植物[5b,11],一般策略是增加结合的程度。但是,这导致水溶性不足并使合成复杂化。精确剂和动力因素由于分子的相互作用而形成较低的能级,也是获得红移发射的策略。[12] CHI和同事引入了分子间卤素键合,以提高超大的磷光效率高达52.10%。[4C] KIM和同事报告了一种通过互联体相互作用(卤素和氢键)增强磷光的策略。[4A]众所周知,室内电荷转移(ICT)可以减少单线和三重态,张和同事之间使用ICT来促进磷光的能量差距。[13] Tian和同事报告了基于宿主增强的ICT和宿主诱导的分子内旋转限制的多色发光。[14]最近,我们的小组制定了协同增强策略,以实现室温磷光(RTP),[2B,10,15],我们已经开发了多阶段组装的超分子系统,这些系统显示出通过荧光共振能量传递和型型组件,这些系统显示出红色和近红外的Emision。[16]然而,尚未报道使用宿主 - guest相互作用来调节ICT并以有效且可调的磷光形式形成动力的方法。此外,我们发现超分子引脚可用于细胞成像,尤其是线粒体中的成像。这种超分子策略在这项研究中,我们现在合成了几个新型的桥梁苯基苯基盐荧光团,并通过供体 - 受体的网状液与柔性烷基链相连。化合物1(方案1)是一个典型的示例。Using NMR spectroscopy, mass spectrometry (MS), transmission electron microscopy (TEM), and theoretical calculations, we analyzed the “molecular folding” binding of 1 and CB[8], and we found that 1 /CB[8] host–guest assemblies show the highest phosphorescence quantum yield reported to date for ultralong organic phosphorescence (UOP) materials.与参考化合物进行仔细的比较揭示了有效磷光的机械性是由于三个主要因素:第一个是非放射性衰变的较低速率,分散在富含羟基的矩阵中,CB [8]严重地封装了色彩的封装[8]和柔性链被抑制了非差异性差异;其次,有效的ICT提高了ISC的速率;最后,分子内卤素键的形成使辐射衰减的速率从t 1增加到S 0。