激子淬火。[10]研究还致力于开发带有红移排放的有机植物[5b,11],一般策略是增加结合的程度。但是,这导致水溶性不足并使合成复杂化。精确剂和动力因素由于分子的相互作用而形成较低的能级,也是获得红移发射的策略。[12] CHI和同事引入了分子间卤素键合,以提高超大的磷光效率高达52.10%。[4C] KIM和同事报告了一种通过互联体相互作用(卤素和氢键)增强磷光的策略。[4A]众所周知,室内电荷转移(ICT)可以减少单线和三重态,张和同事之间使用ICT来促进磷光的能量差距。[13] Tian和同事报告了基于宿主增强的ICT和宿主诱导的分子内旋转限制的多色发光。[14]最近,我们的小组制定了协同增强策略,以实现室温磷光(RTP),[2B,10,15],我们已经开发了多阶段组装的超分子系统,这些系统显示出通过荧光共振能量传递和型型组件,这些系统显示出红色和近红外的Emision。[16]然而,尚未报道使用宿主 - guest相互作用来调节ICT并以有效且可调的磷光形式形成动力的方法。此外,我们发现超分子引脚可用于细胞成像,尤其是线粒体中的成像。这种超分子策略在这项研究中,我们现在合成了几个新型的桥梁苯基苯基盐荧光团,并通过供体 - 受体的网状液与柔性烷基链相连。化合物1(方案1)是一个典型的示例。Using NMR spectroscopy, mass spectrometry (MS), transmission electron microscopy (TEM), and theoretical calculations, we analyzed the “molecular folding” binding of 1 and CB[8], and we found that 1 /CB[8] host–guest assemblies show the highest phosphorescence quantum yield reported to date for ultralong organic phosphorescence (UOP) materials.与参考化合物进行仔细的比较揭示了有效磷光的机械性是由于三个主要因素:第一个是非放射性衰变的较低速率,分散在富含羟基的矩阵中,CB [8]严重地封装了色彩的封装[8]和柔性链被抑制了非差异性差异;其次,有效的ICT提高了ISC的速率;最后,分子内卤素键的形成使辐射衰减的速率从t 1增加到S 0。
主要关键词