量子游动自诞生以来就被用于开发量子算法,可以看作是通常电路模型的替代品;将稀疏图上的单粒子量子游动与线格上的双粒子散射相结合就足以执行通用量子计算。在这项工作中,我们解决了一类不具有平移不变性的相互作用的线格上的双粒子散射问题,恢复了 Bose-Hubbard 相互作用作为极限情况。由于其通用性,我们的系统方法为解决一般图上的更一般的多粒子散射问题奠定了基础,这反过来又可以设计不同或更简单的量子门和小工具。作为这项工作的结果,我们表明,当相互作用仅作用于线图的一小部分时,可以高保真地实现 CPHASE 门。
摘要:系统识别中的方法用于获得线性时间不变的状态空间模型,这些模型可以描述大量集合集合的水平平均温度和湿度如何随时间在小强迫下而演变。此处研究的整个集成集成在辐射 - 对流平衡中模拟了云系统解析模型。识别模型扩展了过去研究中使用的稳态线性响应函数,并提供了转移函数,噪声模型以及与二维重力波耦合时的转移函数,噪声模型和对流的行为。开发了一种新的程序,将状态空间模型转换为可解释的形式,该形式用于阐明和量化积云对流中的记忆。此处研究的线性问题是为获得数据驱动和解释的Coarteption的更一般努力的有用参考点。
摘要 — 本文首次提出了一种具有频率不变点的无轭母线电流传感器。现有的矩形母线电流传感器由于大块母线中的涡流而存在频率依赖性问题。所提出的传感器具有用于母线传感区域的新型 C 形结构。首次观察到该结构在 C 形母线的两侧提供了一组频率不变点。在所提出的方案中,使用两个差分形式的集成磁通门传感器来测量这些不变点处的磁通密度。使用 Ansys Maxwell 涡流求解器执行的基于有限元法 (FEM) 的 3-D 分析提供了频率不变点的精确位置。制作了一个原型,并使用德州仪器的 DRV-425 集成磁通门传感器在实验室中对 C 形母线传感器进行了功能测试。实验中,放置在频率不变点的磁通门传感器测量了从 50 Hz 到 1000 Hz 的多个频率下的磁通密度。测试结果表明,使用所提出的 C 形母线,由于频率依赖性而导致的误差从 14 % 降低到 0.85 %。
摘要 - 自治车辆(AV)越来越受到黑客的攻击。但是,AVS的系统安全至关重要,因为任何成功的攻击都会导致严重的经济损失,设备损失甚至人类生命的损失。评估新算法的良好安全原则是表明该提案对强大的对手有抵抗力。因此,在这张海报中,我们意识到最糟糕的攻击类型,称为隐形攻击,对转向控制系统,这对于AVS的横向控制很重要。我们提出的隐形攻击的核心是使用模型预测性控制(MPC),状态空间模型(SSM),系统识别(SI)和动态时间扭曲(DTW)允许攻击者准确模拟系统行为,从而允许它们执行不可检测的攻击。
构建局部表面表示最近在3D视觉中引起了很大的关注,从而使复杂的3D形状成为较简单的局部地理序列。受到2D离散代表学习的进步的启发,最近的方法提出了将3D形状分解为常规网格,每个单元格与从可学习的代码簿中采样的离散代码相关联。不幸的是,现有方法忽略了局部刚性自相似性以及与方向可能变化有关的3D几何形状固有的歧义。因此,此类技术需要非常大的代码手册来限制几何和姿势的所有可能变异性。在这项工作中,我们提出了一种新颖的生成模型,该模型通过将local的几何形状紧密地嵌入旋转和翻译不变的manner中来证明产生质量。此策略允许我们的离散代码代码书通过避免本地和全局冗余来表达更大范围的几何结构。至关重要的是,我们通过仔细的体系结构设计表明,我们的方法可以从本地嵌入中恢复有意义的形状,同时确保全球一致性。进行的实验表明,在相似的设置下,我们的方法优于基线方法。
基于连续脑电图 (cEEG) 的视觉频谱表示的患者独立癫痫活动检测已广泛用于诊断癫痫。然而,由于不同受试者、通道和时间点的细微变化,精确检测仍然是一项相当大的挑战。因此,捕获与高频纹理信息相关的脑电图模式的细粒度、判别性特征尚未解决。在这项工作中,我们提出了散射变压器 (ScatterFormer),这是一种基于不变散射变换的分层变压器,它特别关注细微特征。特别是,解缠结的频率感知注意力 (FAA) 使变压器能够捕获具有临床信息的高频成分,基于多通道脑电图信号的视觉编码提供了一种新的临床可解释性。在两个不同的癫痫样检测任务上的评估证明了我们方法的有效性。我们提出的模型在 Rolandic 癫痫患者中实现了 98.14% 和 96.39% 的中位 AUCROC 和准确率。在新生儿癫痫发作检测基准上,其平均 AUCROC 比最先进的方法高出 9%。
在BCI的背景下,更具体地用于通过脑电图(EEG)测量的数据分析,传统方法基于根据数据计算得出的精心选择的功能。通常应用的技术包括时间域中脑电图数据的主要成分分析,或基于频域中功率谱的特征(Azlan&Low,2014; Boubchir等,2017; Boonyakitanont et al。,2020)。由于深度学习领域的最新进展,提出了避免手动特征提取的神经网络的不同架构,并且似乎超过了更传统的方法。例如,提出了神经网络EEGNET来支持多个BCI范式,通常被称为该领域的基准模型(Lawhern等,2018)。在临床环境中,使用VGG16神经网络的某些变体来检测与癫痫相关的信号(Da Silva LourenC报O等,2021)。通常,深度学习已成功地应用于与脑电图数据有关的各种任务(Craik等,2019; Roy等,2019)。
摘要:已经提出,神经系统具有产生21种动作的能力,因为它重新使用了一些不变的代码。先前的工作已经确定,在不同运动中,动态23的神经种群活动的22个动态是相似的,其中动态23是指人口活动的瞬时空间模式如何变化。在这里,我们测试24神经种群的不变动态是否实际上用于发出25个直接运动的命令。使用脑机界面,该脑机界面将猕猴的26皮层活性转化为神经假体光标的命令,我们发现在不同运动中具有不同的神经活动模式发出了相同的27命令。然而,28这些不同的模式是可以预测的,因为我们发现活动29模式之间的过渡受到跨运动的相同动力的控制。这些不变动态是30个低维的动力学,并且在批判性地与脑机界面保持一致,因此它们预测了31个神经活动的特定组成部分,实际上发出了下一个命令。我们引入了32个最佳反馈控制模型,该模型表明不变动态可以帮助将33个运动反馈转换为命令,从而减少了神经人口需要34控制运动的输入。总的来说,我们的结果表明,不变的动态驱动器命令35可以控制各种动作,并显示如何与不变的36动力学集成反馈以发出可通用的命令。37
1 纳季兰大学医学院内科放射学系,纳季兰 61441,沙特阿拉伯;yealmalki@nu.edu.sa 2 世宗大学无人驾驶车辆工程系,首尔 05006,韩国;umair@sejong.ac.kr 3 Secret Minds,创业组织,伊斯兰堡 44000,巴基斯坦;engnr.waqasahmed@gmail.com 4 国立科技大学(NUST)机械与制造工程学院(SMME)机器人与智能机械工程系(RIME),H-12,伊斯兰堡 44000,巴基斯坦; karamdad.kallu@smme.nust.edu.pk 5 伊巴达特国际大学电气工程系,伊斯兰堡 54590,巴基斯坦 6 卡西姆大学医学院放射学系,沙特阿拉伯布赖代 52571;salduraibi@qu.edu.sa(SKA);al.alderaibi@qu.edu.sa(AKA) 7 纳季兰大学工程学院电气工程系,沙特阿拉伯纳季兰 61441;miditta@nu.edu.sa 8 扎加齐格大学人类医学学院放射学系,埃及扎加齐格 44631;maatya@zu.edu.eg 9 纳季兰大学应用医学科学学院放射科学系,沙特阿拉伯纳季兰 61441; hamalshamrani@nu.edu.sa * 通信地址:amad.zafar@iiui.edu.pk † 这些作者作为第一作者对这项工作做出了同等贡献。
摘要:生命最显著的特征之一是它能够处理新事物,即茁壮成长并适应新情况以及环境和内部成分的变化。了解这种能力对于几个领域至关重要:形式和功能的进化、生物医学有效策略的设计以及通过嵌合和生物工程技术创造新的生命形式。在这里,我们回顾了生物体解决各种问题的有启发性的例子,并提出了在任意空间中有效导航作为思考进化过程中认知扩展的不变量。我们认为,我们天生识别陌生伪装下的能动性和智慧的能力远远落后于我们在熟悉的行为环境中检测它的能力。生命的多尺度能力对于自适应功能至关重要,可以增强进化并为自上而下的控制(而不是微观管理)提供策略以应对复杂的疾病和伤害。我们提出了一种以观察者为中心的观点,该观点与规模和实施无关,说明了进化如何利用类似的策略来探索和利用代谢、转录、形态以及最终的 3D 运动空间。通过概括行为的概念,我们获得了关于进化、系统级生物医学干预策略以及生物工程智能构建的新视角。该框架是与高度陌生的实施方式中的智能相关的第一步,这对于人工智能和再生医学的进步以及在越来越多地由合成、生物机器人和混合生物组成的世界中蓬勃发展至关重要。