地震地球物理学在很大程度上依赖于地下建模,而地下建模基于对现场收集数据的数值分析。在生成一致的地下模型之前,对典型地震实验中产生的大量数据进行计算处理也需要同样大量的时间。电磁油藏数据,如 CSEM(受控源电磁)、岩石物理技术,如多井的电阻率和磁共振,以及工程优化问题,如油藏通量模拟器、井场设计和石油产量最大化,也需要强大的计算设备进行分析。另一方面,在过去十年中,量子计算机的发展取得了很大进展:机器利用量子力学定律比传统计算机更快地解决困难的计算问题。这种进步的一个具体例子就是所谓的量子霸权,最近已经使用专用量子计算机进行了演示 [1-3]。地球科学领域和相关行业(如碳氢化合物行业)有望从量子计算带来的进步中获益。目前,不同的量子技术和计算模型正在不断发展。IBM、谷歌和英特尔等巨头公司正在开发基于超导技术的量子计算机 [4]。其他公司也在投入大量精力构建基于约瑟夫森结的功能齐全的量子计算机,比如北美的 Rigetti,而美国的 IonQ 和奥地利的 AQT 则致力于开发基于捕获离子的计算机 [5]。加拿大公司 D-Wave 是量子退火计算模型的领先者 [6],该公司已经开始交易量子机器,加拿大的 Xanadu 也在提供对其光子量子计算机的云端访问 [7,8]。
在经典迭代线性系统求解器中,预处理是处理病态线性系统最广泛和最有效的方法。我们引入了一种称为快速求逆的量子原语,可用作求解量子线性系统的预处理器。快速求逆的关键思想是通过量子电路直接对矩阵求逆进行块编码,该电路通过经典算法实现特征值的求逆。我们展示了预处理线性系统求解器在计算量子多体系统的单粒子格林函数中的应用,该函数广泛用于量子物理、化学和材料科学。我们分析了三种情况下的复杂性:哈伯德模型、平面波对偶基中的量子多体哈密顿量和施温格模型。我们还提供了一种在固定粒子流形内进行二次量化格林函数计算的方法,并指出这种方法可能对更广泛的模拟有价值。除了求解线性系统之外,快速求逆还使我们能够开发用于计算矩阵函数的快速算法,例如高效准备吉布斯态。我们分别基于轮廓积分公式和逆变换介绍了两种高效的此类任务方法。
摘要 Itoh-Tsujii 逆算法在椭圆曲线密码等密码应用中寻找逆元方面做出了重要贡献。本文提出了一种新的 Hex Itoh-Tsujii 逆算法,用于在现场可编程门阵列 (FPGA) 平台上高效计算由 NIST 推荐的不可约三项式生成的二进制域的乘法逆元。基于 Hex Itoh Tsujii 逆算法的所提架构由十六进制电路和四重加法链构成。这种组合提高了资源利用率。实验结果表明,与现有实现相比,所提出的工作具有更好的面积时间性能。关键词:现场可编程门阵列 (FPGA)、Itoh-Tsujii 逆算法 (ITA)、查找表 (LUT)、有限域 (FF) 分类:集成电路(存储器、逻辑、模拟、射频、传感器)
将逆向数据纳入量子计算代表了量子技术和人工智能领域的重大进步。然而,实施这一模型带来了一些技术和理论挑战,包括需要精确控制量子态并尽量减少时间反转过程中的误差。思想实验“Levandovsky's Cat”展示了逆向数据在解决量子力学基本问题和开发超级智能方面的潜力。未来的研究应侧重于优化逆向时间演化的算法和开发强大的量子门以提高计算可靠性。所提协议的实验实现将允许验证理论结论并评估逆向数据在量子系统中的实际适用性。
常规定量MRI基于两步过程,在该过程中,第一个中间图像是重建的,然后将物理模型拟合了像素,以获取参数图。获得足够数量的高质量图像,并需要精心设计的对比度才能获得良好的拟合度。因此,对于许多临床应用而言,这些方法太慢了。相比之下,基于非线性模型的重建方法将图像重建作为单个反问题。他们利用了测量过程的物理模型,并直接从k空间估算了定量参数图。因此,它们可以最佳地使用可用数据,并启用从使用瞬态磁化动力学的序列获得的信号中启用高效的参数映射。1-5这些技术有两个问题:它们在计算上是要求的,需要专门为每个应用程序设计。另外,指纹6使用Bloch模拟获得的查找dictio-nary来映射直接从淡淡的数据中计算出的中间图像的像素来绘制定量参数图。这可以在灵活且计算上有效的框架中启用具有高加速度的多参数映射,但由于缺乏最小二乘数据固定项,因此并不是最佳的。子空间模型可以通过使用较大的线性子空间近似物理信号来利用更有效的映射。对于复杂的自旋动力学,可能需要更大的子空间系数来准确表示信号,从而使子空间方法效率较低。5它们非常有效地减少重建的计算需求,7-11,但仍然不是最佳的,因为线性子空间用于近似可能的信号的歧视。
摘要。由于难以获得唯一解,势场数据反演问题是一个具有挑战性的问题。本文确定了各种类型的非唯一性,并认为消除所有类别的非唯一性既不可能也没有必要。某些类型的非唯一性是由于人为的限制和选择造成的,这些类型将永远存在。列出所有解决方案、对可接受的解决方案施加额外约束、先验理想化、使用先验或补充信息、描述所有解决方案的共同点、获得极值解决方案、寻求所有可能解决方案的分布等。面对非唯一性,有各种反应。结果表明,所有这些技术只是改变了非唯一性的形式。讨论了一些用于获得目标函数全局最小值的算法。阐明了看似不同的方法背后的概念共性以及由于不同的公理背景而对相同数值结果进行非唯一解释的可能性。
摘要。随着能源需求继续上升,位于萨拉克山的地热电厂在增加传递给Java-Bali地区的电力供应方面起着至关重要的作用。这项研究的目的是确定萨拉克山的3D地下结构,特别是使用重力法的储层分布作为地热能的靶标。重力数据,包括重力干扰(GD),Geoid和数字高程模型(DEM),从ICGEM网站获得了总共48740个数据。基于残留异常图的结果,萨拉克山下方的低异常具有-5.15至-1.88 mgal,这被怀疑与岩浆室相关。表现下方的高异常的值在0.92至5.01 mgal中,表明被认为是储层岩石的安第斯山玄武岩侵入性岩石。通过3D反转建模,对萨拉克山地热系统的地下结构,一个粘土盖,密度从2.47到2.5 gr/cc,深度为0至700 m,安第斯山脉玄武岩作为储层,其密度为2.74至2.91 gr/cc的密度在700至30000 m的深度上,已识别为3000 m m dowed。
摘要我们提出了一种新的多模式面部图像生成方法,该方法将文本提示和视觉输入(例如语义掩码或涂鸦图)转换为照片真实的面部图像。为此,我们通过使用DM中的多模式特征在预训练的GAN的潜在空间中使用多模式特征来结合一般的对抗网络(GAN)和扩散模型(DMS)的优势。我们提供了一个简单的映射和一个样式调制网络,可将两个模型链接起来,并在特征地图和注意力图中将有意义的表示形式转换为潜在代码。使用gan inversion,估计的潜在代码可用于生成2D或3D感知的面部图像。我们进一步提出了一种多步训练策略,该策略将文本和结构代表反映到生成的图像中。我们提出的网络生成了现实的2D,多视图和风格化的面部图像,这些图像与输入很好。我们通过使用预训练的2D和3D GAN来验证我们的方法,我们的结果表现优于现有方法。我们的项目页面可在https://github.com/1211SH/diffusion-driven_gan-inversion/。
基于预训练扩散模型的图像恢复(IR)方法已显示出最先进的性能。但是,它们具有两个基本局限性:1)他们经常假设降解操作员是完全知道的,并且2)它们改变了扩散抽样过程,这可能会导致不在数据歧管上的恢复图像。为了解决这些问题,我们通过快速扩散反转(Bird)提出了盲图恢复(Bird),一种盲IR方法,该方法共同优化了降级模型参数和恢复的图像。为了确保恢复的图像位于数据歧管上,我们在预训练的扩散模型上提出了一种新颖的采样技术。我们方法中的一个关键想法不是修改反向采样,即。e。,一旦取样初始噪声,就不要改变所有中间潜在的潜在。这最终等效于将IR任务作为输入噪声空间中的优化问题。此外,为了减轻与完全展开的扩散模型相关的计算成本,我们利用这些模型的固有功能使用大的时间步骤在正向扩散过程中跳过。我们在几个图像恢复任务上实验验证鸟类,并表明它达到了最先进的表现。项目页面:https://hamadichihaoui.github.io/bird。
摘要。设计了设计隐私相机(PPC)的问题。以前的设计依赖于静态点扩展功能(PSF),以防止检测私人视觉信息,例如可识别的面部特征。但是,可以通过测量对点光源的摄像机响应来轻松恢复PSF,从而使这些相机容易受到PSF反转攻击的影响。提出了一种新的动态隐私(Dypp)摄像头设计,以防止此类攻击。dypp摄像机依赖于动态的光学元素,即这种空间光模拟器来实现随时间变化的PSF,该PSF随着图片的变化而变化。PSF是通过学习的嵌入式嵌入,对手进行的,以同时满足用户指定目标的隐私目标,例如面部识别准确性和任务效用。对多种隐私视力任务的经验评估表明,与以前的PPC相比,Dypp设计对PSF反转功能的强大意义要大得多。此外,该方法的硬件可行性由概念验证摄像头模型验证。