对于理解地壳形成[13–15]和磁性的起源具有重要意义。[16] 在法医学中,材料中的 18 O 测绘有助于追踪动物和人类的地理起源。[17] 在研究固体材料氧化机制的不同方法中,原位环境透射电子显微镜 (TEM) 和原位扫描隧道显微镜对于研究与氧化早期阶段相关的原子级结构变化非常有效。[1,3,5,18,19] 然而,这些原位技术缺乏区分单个氧同位素的灵敏度。同时,对氧同位素高度灵敏的纳二次离子质谱 (SIMS) 和其他基于质谱的技术缺乏 3D 亚纳米级的空间分辨率。 [14,17,20,21] 最近,非原位原子探针断层扫描 (APT) 研究验证了 APT 能够实现材料中 18 O 同位素分布的亚纳米级空间分辨映射。[10,22–25] 然而,将 APT 在亚纳米级空间分辨率下定量映射 18 O 的能力扩展到原位氧化研究尚未得到证实。在这里,我们首次展示了使用 18 O 同位素的原位 APT 分析模型 Fe-18 wt% Cr-14 wt% Ni 模型合金(以下称为 Fe18Cr14Ni)中的氧扩散
ICP-MS被认为是硼同位素分析的强大技术。对于最苛刻的古透明应用,高分辨率的多策略ICP-MS(MC-ICP-MS)通常是选择的技术,可为硼提供精确和准确值,降低到0.2 - 0.4‰。6个四极杆ICP-MS(Q-ICP-MS),有时也将与激光消融结合使用,用于各种应用程序,对精确性和准确性的要求较小。然而,Q-ICP-MS也可以通过碰撞阻尼来消除常规测量中的许多噪声,从而产生接近理论上可能的精度的精确度。7这需要使用适当的仪器硬件和分析条件,如本申请注释中进一步讨论。因此,尽管本质上是一种顺序的仪器,但Q-ICP-MS提供的性能可以接近MC-ICP-MS。即使对于苛刻的应用程序,也可以获得足够的精度,并且分析适合于多策略仪器成本的一小部分。具有Q-ICP-MS的用途更广泛,并且不仅用于同位素比测量值,因此对同位素比率能力的欣赏可以将高质量的同位素比分析带入具有不同分析需求的实验室的范围。虽然Q-ICP-MS已成功用于硼同位素比分析8,但碰撞阻尼很少在已发表的文献中使用,因此发表的结果可能并不能反映Q-ICP-MS的真正潜力。本研究的目的是在充分利用仪器的功能时,使用Perkinelmer的Nexion®ICP-MS研究Q-ICP-MS的性能。
高分辨率透射电子显微镜 (HRTEM)、原子探针断层扫描 (APT) 和基于同步加速器的扫描透射 X 射线显微镜 (STXM) 等先进的微分析技术使人们能够在原子尺度上表征天然材料的结构和化学和同位素组成。双聚焦离子束扫描电子显微镜 (FIB-SEM) 是一种强大的工具,可用于特定位置的样品制备,然后通过 TEM、APT 和 STXM 进行分析,以获得最高的能量和空间分辨率。FIB-SEM 也可用作三维 (3D) 断层扫描的独立技术。在这篇评论中,我们将概述在地球和行星科学中使用 FIB-SEM 对天然材料进行高级表征时的原理和挑战。更具体地说,我们旨在通过以下示例突出 FIB-SEM 的最新应用:(a) 在月球土壤颗粒的空间风化研究中使用传统的 FIB 超薄小颗粒样品制备,(b) 通过基于 FIB 的 APT 对锆石中的 Pb 同位素进行迁移,(c) 基于协调同步加速器的 STXM 对碳质球粒陨石中的外星有机物质进行表征,以及最后 (d) 通过切片和视图方法对基于 FIB 的油页岩孔隙进行 3D 断层扫描。双光束 FIB-SEM 是一个强大的分析平台,其技术开发和适应范围在地球和行星科学领域是广阔而令人兴奋的。例如,在不久的将来,双光束 FIB-SEM 将成为表征返回地球的细颗粒小行星和月球样本的重要技术。
,国立科学与技术大学,伊斯兰堡44000,巴基斯坦B化学工程系,挪威科学与技术大学,SEMSælandsVEI 4,N-7491 TRONDHEIM,NORWAIM COCICATION,NORWAIM C COCICOCE,FINISTOR of FIMISTION,FINILLIAN of FIL ENSICAL,FI-INIDIA国立技术研究所,Tiruchirappalli 620015,泰米尔纳德邦,印度泰米尔纳德邦E e Madurai kamaraj大学,马杜雷·纳加尔(Palkalai Nagar),马德雷(Madurai)625021,泰米尔纳德邦(Tamil Nadu) Mato Grosso Do Sul,大学城,Senador Filinto Muller Avenue No. 1555,79074-460,Campo Grande,MS,巴西H化学研究所,Tartu大学,拉维拉14A,50411 Tartu,Estonia I燃料电池和氢联合承担,De la toso d la toison d'Or 56-60,BELGIM JENTION和BELGIUM JENTRION ISIONT和NINTALIT ISTONT和NYTART ISTONT,NINTAL ISTION和ISTORITION,BELGIUM D'IN Technologies E ICSI Ramnicu Valcea,240050 Uzinei Street,Romania K编辑,国际氢能源杂志,国际氢能协会,美国工程学国际氢能协会,Camino de Sevilla大学,Camino de los de los decubimientos,S/N,S/N,41092,Sevilla,Spain,Spain,国立科学与技术大学,伊斯兰堡44000,巴基斯坦B化学工程系,挪威科学与技术大学,SEMSælandsVEI 4,N-7491 TRONDHEIM,NORWAIM COCICATION,NORWAIM C COCICOCE,FINISTOR of FIMISTION,FINILLIAN of FIL ENSICAL,FI-INIDIA国立技术研究所,Tiruchirappalli 620015,泰米尔纳德邦,印度泰米尔纳德邦E e Madurai kamaraj大学,马杜雷·纳加尔(Palkalai Nagar),马德雷(Madurai)625021,泰米尔纳德邦(Tamil Nadu) Mato Grosso Do Sul,大学城,Senador Filinto Muller Avenue No. 1555,79074-460,Campo Grande,MS,巴西H化学研究所,Tartu大学,拉维拉14A,50411 Tartu,Estonia I燃料电池和氢联合承担,De la toso d la toison d'Or 56-60,BELGIM JENTION和BELGIUM JENTRION ISIONT和NINTALIT ISTONT和NYTART ISTONT,NINTAL ISTION和ISTORITION,BELGIUM D'IN Technologies E ICSI Ramnicu Valcea,240050 Uzinei Street,Romania K编辑,国际氢能源杂志,国际氢能协会,美国工程学国际氢能协会,Camino de Sevilla大学,Camino de los de los decubimientos,S/N,S/N,41092,Sevilla,Spain,Spain,国立科学与技术大学,伊斯兰堡44000,巴基斯坦B化学工程系,挪威科学与技术大学,SEMSælandsVEI 4,N-7491 TRONDHEIM,NORWAIM COCICATION,NORWAIM C COCICOCE,FINISTOR of FIMISTION,FINILLIAN of FIL ENSICAL,FI-INIDIA国立技术研究所,Tiruchirappalli 620015,泰米尔纳德邦,印度泰米尔纳德邦E e Madurai kamaraj大学,马杜雷·纳加尔(Palkalai Nagar),马德雷(Madurai)625021,泰米尔纳德邦(Tamil Nadu) Mato Grosso Do Sul,大学城,Senador Filinto Muller Avenue No. 1555,79074-460,Campo Grande,MS,巴西H化学研究所,Tartu大学,拉维拉14A,50411 Tartu,Estonia I燃料电池和氢联合承担,De la toso d la toison d'Or 56-60,BELGIM JENTION和BELGIUM JENTRION ISIONT和NINTALIT ISTONT和NYTART ISTONT,NINTAL ISTION和ISTORITION,BELGIUM D'IN Technologies E ICSI Ramnicu Valcea,240050 Uzinei Street,Romania K编辑,国际氢能源杂志,国际氢能协会,美国工程学国际氢能协会,Camino de Sevilla大学,Camino de los de los decubimientos,S/N,S/N,41092,Sevilla,Spain,Spain,国立科学与技术大学,伊斯兰堡44000,巴基斯坦B化学工程系,挪威科学与技术大学,SEMSælandsVEI 4,N-7491 TRONDHEIM,NORWAIM COCICATION,NORWAIM C COCICOCE,FINISTOR of FIMISTION,FINILLIAN of FIL ENSICAL,FI-INIDIA国立技术研究所,Tiruchirappalli 620015,泰米尔纳德邦,印度泰米尔纳德邦E e Madurai kamaraj大学,马杜雷·纳加尔(Palkalai Nagar),马德雷(Madurai)625021,泰米尔纳德邦(Tamil Nadu) Mato Grosso Do Sul,大学城,Senador Filinto Muller Avenue No.1555,79074-460,Campo Grande,MS,巴西H化学研究所,Tartu大学,拉维拉14A,50411 Tartu,Estonia I燃料电池和氢联合承担,De la toso d la toison d'Or 56-60,BELGIM JENTION和BELGIUM JENTRION ISIONT和NINTALIT ISTONT和NYTART ISTONT,NINTAL ISTION和ISTORITION,BELGIUM D'IN Technologies E ICSI Ramnicu Valcea,240050 Uzinei Street,Romania K编辑,国际氢能源杂志,国际氢能协会,美国工程学国际氢能协会,Camino de Sevilla大学,Camino de los de los decubimientos,S/N,S/N,41092,Sevilla,Spain,Spain
当今的大趋势,如电子产品的小型化、汽车电气化的推动以及对可持续建筑能源技术的需求,都需要具有极端或动态可切换热性能的新型热管理和存储材料。为了实现这一目标,了解材料的热传输和相关特性对于材料开发至关重要,需要可靠的高通量热特性。在本次研讨会上,我将讨论与极端热导率 (Λ)、新型热特性技术和热能应用相关的四个主题。首先,我将介绍 BA 和同位素增强 BN 中超高 Λ 的建立,其值分别为 1000 W m-1 K-1 和 1600 W m-1 K-1,远远超过铜 (400 W m-1 K-1)。这些材料具有成为微电子和电力电子领域下一代散热器的潜力,超越成本低廉的合成金刚石。它们的极高值可以通过现代第一性原理理论来理解,该理论仔细考虑了声子、同位素无序和其他缺陷的相互作用。其次,我将展示一类新型相变材料 (PCM),即 Ni-Mn-In 合金,用于固态热开关的动态热管理,以提高各个领域的能源效率,例如汽车发动机、快速充电电池和建筑围护结构。这些材料通过马氏体转变引起的电子迁移率变化在 300 K 附近表现出高对比度(高达 ~75%)的可逆 Λ 变化,在高温相中显示出更高的 Λ(与常见 PCM 中的趋势相反)。第三,我将介绍一种基于结构化照明和热成像的首创热计量法,用于高通量材料表征。该技术能够高效地并行研究多个样品,并有可能实现百万像素属性映射,这是传统激光技术无法实现的。它还可以方便地测量各向异性的热
摘要 - 在非常低的24氧散酵素的条件下形成的富含Enstatite的陨石(包括aubrites)(ƒO2:IronWüstite缓冲液–2至–6),因此具有研究的能力,可以减少我们太阳能系统中多个身体上存在的25个岩浆作用。金属,26个硫化物和硅酸盐之间的元素分配在低ƒO2处受到限制。然而,对富含Enstatite的27陨石的研究可能会产生低ƒO2对元素行为的影响的经验证据。这28份作品介绍了14个aubrites的全面岩石学和氧同位素研究,其中包括4个以前未对其进行详细研究的29个陨石。aubrites表现出各种30种纹理和矿物学,它们的元素分区模式指出了所有31个14个样品的冷却历史的速度。氧同位素分析表明,aubrite母体可能比最初报告的异质性32个,或者可能经历了不完全的岩浆33分化。与其他分类的aubrites相反,并基于纹理和矿物学34观测,我们建议西北非洲8396陨石显示出对35个Enstatite软骨饲养的亲和力。通过测量硅酸盐,硫化物,36和金属的主要元素组成,我们计算了新的金属硅酸盐,硫化物 - 硅酸盐和硫化物 - 金属分区的37个系数37适用于低聚期在低聚期2的小火系统的载体。使用分区系数确定的aubrites元素的地球化学38行为类似于针对汞岩浆系统实验确定的元素的39个地球化学行为。4340个富含Enstatite的陨石,包括氨基盐,代表了与41汞相似的有价值的天然岩石,他们的研究可以进一步了解我们对太阳能42系统中岩浆降低的理解。
102E Merrick Hall Coral Gables, FL 33124 教育经历 2010 年获得伊利诺伊大学芝加哥分校人类学系博士学位 博士委员会:L. Antonio Curet (主席)、Anna Roosevelt、Sloan Williams、Patrick Ryan Williams、Holger Schutkowski 论文:史前波多黎各的饮食与社会,同位素方法 2001 年获得布拉德福德大学考古与环境科学学院人体骨科学、古病理学和丧葬考古学理学硕士学位(优异) 论文:中世纪早期 Weingarten 中的性别,殡葬分析 1999 年获得密歇根大学安娜堡古典考古学学士学位(最高荣誉)。荣誉论文:底格里斯河畔塞琉西亚的坟墓 担任职务 2024- 密歇根大学凯尔西考古博物馆教育主任。 2011- 菲尔德自然历史博物馆人类学系研究助理。 2021-2024 迈阿密大学人类学系主任。 2017-2024 迈阿密大学人类学系副教授。 2019-2021 迈阿密大学人类学系研究生院主任。 2017-2021 迈阿密大学拉丁美洲研究项目主任。 2013-2017 迈阿密大学人类学系助理教授。 2011-2012 伊利诺伊大学芝加哥分校牙科学院口腔医学与诊断科学系博士后研究员。 2010-2012 客座助理教授,社会学和人类学系,森林湖学院,伊利诺伊州森林湖 2007-2010 研究生助教,伊利诺伊大学芝加哥分校人类学系 2004-2010 讲师,社会学和人类学系,森林湖学院,伊利诺伊州森林湖 2003-2006 兼职助理教授,伊利诺伊大学芝加哥分校牙科学院口腔医学和诊断科学系 2006-2006 收藏经理 II-人类学系,伊利诺伊州芝加哥自然历史博物馆。2004-2006 贡献者-牙科应急医疗准备培训 (DEMRT) 中心/战略天然产品实验室 (LSNP),伊利诺伊大学芝加哥分校牙科学院
大蒜素(diallthiosulfinate)是一种有效的抗菌物质,是由大蒜组织在损伤中产生的,作为防御病原体和害虫的防御。大蒜素是一种反应性硫种(RSS),可氧化谷胱甘肽和蛋白质中的可及性半胱氨酸。我们使用了差异同位素标记方法(OXIXAT)来鉴定细菌蛋白质组中的大shic氏靶标。我们比较了大鼠素荧光症的蛋白质组织PF 0-1和丙酸s耐鼠素暴露后的PF AR-1。在暴露于大蒜素之前,蛋白质主要降低,其中约77%的蛋白质表现出小于20%的半胱氨酸氧化。蛋白氧化在暴露于大蒜素后增加,仅来自大蒜素敏感的PF 0-1的蛋白质中只有50%,但来自大丙酸酯耐受性PF AR-1的蛋白质仍低于20%的氧化。DNA回旋酶被鉴定为大蒜素靶标。Cys 433大约6%。在大蒜素处理后,易感PF 0-1的CYS 433氧化程度增加到55%,但在耐受性PF AR-1中仅增加至10%。大蒜素在体外抑制了大肠杆菌DNA旋转酶的活性,其浓度与纳利迪酸相同的浓度范围。纯化的PF AR-1 DNA回旋酶在体外抑制比PF 0-1酶更大程度地抑制。将PF AR-1 Gyra替换为PF 0-1,使交换突变体比PF 0-1野生型更容易受到大种呼吸的影响。在一起,这些结果表明,在耐大slic蛋白耐sap的PF AR-1背景中,GYRA免受体内的氧化保护,而不是PF AR-1 Gyra亚基本质上比PF 0-1 gyra subunit在本质上易于抗原氧化。DNA回旋酶是药物重要的抗生素的靶标。因此,大蒜素及其类似物可能具有单独或与其他治疗剂结合的旋酶抑制剂的潜力。
在石化沉积盆地中,CO 2与碳氢化合物之间的相互作用对碳氢化合物的产生和积累产生了显着影响。这项研究的重点是Huangqiao石油和天然气储层,该储藏室以在中国拥有最大的CO 2储备而闻名。在裂缝,碳和氧同位素分析中,方解石静脉的同位素同位素的同位素日期以及稀土元素(REE)分析用于阐明研究区域中无机和有机流体的年代学和起源。岩石学观测表明,存在各种流体夹杂物的成分,包括气态CO 2,气态CH 4,CH 4 -CO 2混合物和碳氢化合物流体。此外,通过拉曼定量测量和热力学模拟,计算了CH 4和CO 2轴承流体夹杂物的密度,成分,压力和温度特征。基于流体夹杂物和U – PB年代的捕集条件,确定了两个碳氢化合物充电的阶段:一个早期夏普阶段(大约200-185 MA),其特征是中期油和CH 4和早期始新世阶段(大约为61-41 mA),标有高成熟度和CH 4。co 2的积累事件分为两个阶段:在始新世早期(大约59-39 ma)期间高密度CO 2流体活性,而低密度CO 2流体活性则在第三级期期间(大约23-4 mA)。此外,深层流体流入储层导致水热改变,这是由异常高的均质化温度和玻璃体反射率所证明的。CO 2对原油具有提取作用,其较晚进入主要导致清除较轻的组件,尤其是CH 4。当高温水热CO 2进入油储油罐时,它会加速原油的开裂并改变液体的成分。这个热事件还加快了源岩的热演化,从而在整个储层的开发过程中导致提取,热解和气体位移。这项研究提出了一种全面的方法,用于定量研究这种性质的石化盆地的地质流体。
同位素和核技术在我们日常生活的许多方面发挥着重要作用,是我们社会经济发展不可或缺的一部分。无论是在医疗诊断和治疗、食品安全、工业过程控制还是机场行李检查中,这些技术都满足了人类的基本需求,增强了工业竞争力,或增进了我们对自然及其过程的理解。然而,部分由于核电领域的事故,一部分公众认为任何核技术都是天生不安全的,忽视了大量有利于健康、福利和环境的核应用。这些情绪大多是由缺乏信息和误解造成的。只有通过展示核应用提供的众多机会和优势才能纠正这种情况。编写这样一本书的想法源于这样一个事实:在过去十年中,人们对自然科学的兴趣普遍下降,同时,即使在最工业化的国家,也明显缺乏对核化学和放射化学感兴趣的学生。如何吸引学生的问题与如何让社会上其他感兴趣的群体意识到核分析技术 (NAT) 的有益应用的问题息息相关。显然,有吸引力且易于理解的公共信息材料非常缺乏。该主题在专业期刊上得到了充分介绍,在科学会议上也得到了很好的展示,但很少有印刷材料可供公众解释核技术在许多类型的问题上的有益应用。呼吁参与这些技术的研究人员提交简短而说明性的投稿,在六个月内收到了近五十份投稿,这表明核分析至关重要,并在当前分析技术的武器库中发挥着重要作用。这些对 NAT 有用应用的描述被选中,因为它们具有普遍意义,与其他领域的专家相关,甚至是为了激励核分析界超越其工作的常规范围并扩大其努力范围。这本书应该能够吸引对自然科学感兴趣的年轻人的注意力,教师也可以使用它来向年轻一代传播核知识。希望其他核领域能有更多此类汇编,以提高公众对核技术诸多有益贡献的认识。