对更高能量密度的不懈追求对电池安全性提出了挑战。[8,9] 更薄的隔膜会增加穿孔的危险,而锂金属的使用则有可能引起枝晶穿透和短路。发生短路时,快速自放电产生的大电流通过低电阻电子通路产生焦耳热,使隔膜和电极材料的温度达到击穿点(150-250°C),[10] 引发一系列放热反应和热失控。[11,12] 内部短路可能是由机械变形(例如在钉刺试验期间 [13,14] )和过度充电等外部原因引起的,但也可能由于没有明显的外部原因而发生,例如最近发生的停放电动汽车自燃事件。[15] 推测的机制包括电池中导电丝的生长,最终会穿透隔膜并使电池短路。 [16] 目前已开发出各种防止和管理锂离子电池热失控的方法,包括压力释放孔、[17] 防止过度充电的先进电池管理系统、设计为断裂以便电子隔离短路的集电器,[18] 以及阻燃添加剂。[19]
鉴于拓扑自旋纹理在信息存储技术中的潜在应用,其生成和控制是现代自旋电子学最令人兴奋的挑战之一。特别令人感兴趣的是磁绝缘体,由于其低阻尼、无焦耳加热和减少的耗散,可以提供节能的自旋纹理平台。本文证明了样品厚度、外部磁场和光激发之间的相互作用可以产生大量的自旋纹理,以及它们在绝缘 CrBr 3 范德华 (vdW) 铁磁体中的共存。使用高分辨率磁力显微镜和大规模微磁模拟方法,证明了 T-B 相图中存在一个大区域,其中存在不同的条纹畴、skyrmion 晶体和磁畴,并且可以通过相位切换机制进行内在选择或相互转换。洛伦兹透射电子显微镜揭示了磁性纹理的混合手性,在给定条件下属于布洛赫类型,但可以通过厚度工程进一步操纵为尼尔类型或混合类型。可以通过标准光致发光光学探针进一步检查不同磁性物体之间的拓扑相变,该探针通过圆偏振分辨,表明存在激子-skyrmion耦合机制。研究结果表明,vdW磁绝缘体是一种有前途的材料框架,可用于操纵和生成与原子级设备集成相关的高度有序的skyrmion晶格。
支持使用某些生物燃料和/或原料。由于重复计算,满足规定要求所需的某种生物燃料的物理量较少,这使得相应的生物燃料比同类的单一计算生物燃料更具吸引力。定义和合格原料因成员国 (MS) 而异。 EC = 欧洲共同体或欧盟委员会 - 取决于上下文 ETBE = 乙基叔丁基醚,一种含 47% 体积乙醇的含氧汽油添加剂 EU = 欧盟 FQD = 欧盟燃料质量指令 98/70/EC,经指令 2009/30/EC 和 (EU) 2015/1513 修订 GHG = 温室气体 GJ = 千兆焦耳 = 1,000,000,000 焦耳或 100 万 KJ Ktoe = 1000 公吨油当量 = 41,868 GJ = 11.63 GWh MJ = 兆焦耳 MS = 欧盟成员国 MWh = 兆瓦时 = 1,000 千瓦时 (KWh) N/A = 不适用 POME = 棕榈油厂废水 RED = 欧盟可再生能源指令 2009/28/EC RED II = 欧盟可再生能源能源指令 2018/2001/EC RES = 可再生能源 RES-T = 可再生能源在交通运输中的份额 SAF = 可持续航空燃料 SBE = 废漂白土 妥尔油 = 木材制造业的副产品;符合先进生物燃料原料的资格 妥尔油沥青 = 妥尔油蒸馏产生的残渣;符合先进生物燃料原料的资格
首字母缩略词 ACCA – 美国空调承包商协会 ACO – 替代合规选项 AEE – 能源工程师协会 AIA – 美国建筑师协会 ANSI – 美国国家标准协会 ASHRAE – 美国采暖、制冷与空调工程师协会 CASR – 气候行动、可持续性与弹性办公室 CBECS – 商业建筑能源消耗调查 CCD – 丹佛市和县 CPD – 社区规划与发展 DLC – 设计灯光联盟 DOE – 美国能源部 EPA – 美国环境保护署 EPI – 工厂能源绩效指标 ESPM – 能源之星投资组合经理 EUI – 天气标准化场地能源使用强度 FF – 化石燃料 GWP – 全球变暖潜能值 IES – 照明工程协会 kBtu – 千英热单位 kWh – 千瓦时 LBNL – 劳伦斯伯克利国家实验室 LED – 发光二极管 MAI – 制造/农业/工业 NREL – 国家可再生能源实验室O&M – 运营与维护 PE – 专业工程师 PPE – 光合光子效能 PUE – 能源使用效率 RA – 注册建筑师 RMI – 落基山研究所 REC – 可再生能源信用 WBDG – 整体建筑设计指南 μMol/J – 微摩尔每焦耳
近年来,木质复合材料凭借其可持续性及固有的层状多孔结构,在电磁干扰(EMI)屏蔽领域受到了广泛关注。木材的通道结构常用于负载高导电材料以提高木质复合材料的EMI屏蔽性能,但如何利用纯木材制备超薄EMI屏蔽材料的研究很少。本文首先通过平行于年轮切割木材得到超薄单板,然后通过简单的两步压制和碳化制备碳化木膜(CWF)。超薄厚度(140 μ m)、高电导率(58 S cm − 1 )的CWF-1200的比EMI屏蔽效能(SSE/t)可达9861.41 dB cm 2 g − 1,远高于已报道的其他木质材料。此外,在CWF表面原位生长沸石咪唑酯骨架-8(ZIF-8)纳米晶体,得到CWF/ZIF-8。CWF/ZIF-8表现出高达46 dB的EMI屏蔽效能(SE),在X波段表现出11 330.04 dB cm 2 g − 1的超高SSE/t值。此外,超薄CWF还表现出优异的焦耳加热效应。因此,超薄木基薄膜的开发为木质生物质取代传统的不可再生且昂贵的电磁(EM)屏蔽材料提供了研究基础。
在外部施加的载荷下,颗粒包装形成了力链网络,这些网络取决于晶粒的接触网络和刚度。在这项工作中,我们研究了可变刚度颗粒的包装,我们可以通过更改包装中各个颗粒的刚度来指导力链。每个可变刚度颗粒都是由硅胶壳制成的,该壳封装了由低熔点金属合金(田间金属)制成的芯。通过通过共同设置的铜加热器发送电流,可以通过焦耳加热熔化每个粒子内部的金属,从而导致颗粒的软化。随着粒子冷却至室温,合金凝固,粒子恢复了其原始刚度。为了优化包含软颗粒和刚性颗粒的颗粒包装的机械响应,我们采用了一种进化算法,结合了离散元素方法模拟,以预测将在组装边界上产生特定力输出的刚度模式。使用可变刚度颗粒的2D组件在实验中构建了预测的刚度模式,并使用光弹性测量了组装边界不同点处的力输出。此结果是制造机器人颗粒超材料的第一步,可以动态地调整其机械性能,例如力传输,弹性模量和按需频率响应。
摘要。尽管对性能有重大影响,但很少研究太阳能电池中的热分布。此外,尽管INGAN太阳能电池的成就仍在实验室研究状态,但提出的工作致力于在细胞中出现的耦合现象的原始结果,这使得有可能强调新的可能的指南,以提高其效率。据我们所知,在文献中发表的INGAN太阳能电池中热耗散的大多数建模结果仅基于1-D模型,而不是3-D模型。因此,当前贡献中提出的结果是通过与Ingan太阳能电池中的热分布相关的Comsol多物理学3-D分析获得的。为此,我们与“半导体模块”,“固体的传热模块”和“ Wave Optics模块”耦合,使我们能够计算震荡 - 读取 - 读取孔加热,总热量,焦耳的速度,焦耳加热载体的浓度,电场的浓度,电场和Ingan Solar Solar Cylar Cyner in Ingan Solar Cellture in Ingan solar Cellture in Ingan Solar结构。这种方法可以通过确定导致性能下降的加热来源来优化设备稳定性。最后,这些模拟的原始结果表明,基于Ingan的太阳能电池在散发温度的潜力方面提供了很大的可能性,更一般而言,其应用兴趣与其良好的热力学行为相关。
碳纤维增强聚合物(CFRP)复合材料在各个行业中都是必不可少的,这是由于其出色的强度与重量比率,出色的耐用性和较高的刚度。但是,CFRP的有效回收仍然是一个重大挑战,需要开发先进技术和更可持续的废物管理解决方案。在这项研究中,我们提出了一种将CFRP废物升级为大量碳纤维复合闪光石墨烯(CFC-FG)的有效且可再现的方法,该方法是通过成本效益的闪光灯焦耳加热(FJH)在毫秒范围内的。所得的闪光石墨烯的广泛特征是形态,结构,光谱和化学分析。这些研究揭示了高度多孔的层状结构,其氧官能团和涡轮质石墨结构低。重要的结构特征,包括拉曼光谱中的独特d'峰和在选定区域电子衍射(SAED)中观察到的椭圆形图案,强调了其独特的特性。这些CFC-FG的这些组合属性在两电子氧还原反应(2e-ORR)中对过氧化氢(H 2 O 2)产生了出色的电化学性能(2e-ORR)。CFC-FG在0.1 M KOH中显示出近100%的选择性和良好的活性,稳定性测试证实了性能的保留,使其成为实际电气合成应用的有前途的候选人。这项工作的核心概念是为H 2 O 2电气合成的回收,可持续的Elec trocatalyst开发出循环经济并支持全球可持续性目标。
的全球玻璃制造商致力于实现其脱碳目标,就无碳熔化能量来源而言,哪种技术道路将是哪种技术道路是最实用和最经济的。可再生电力用于通过焦耳加热直接融化玻璃的熔化,与通过电解然后燃烧产生绿色氢的能源损失相比,消耗的功率最少。然而,在绿色电力的广泛和连续可用性中仍然存在挑战,每天将电炉扩大到400吨以上。还有其他问题,包括从折射率加速磨损的电炉寿命较短。同样,由于玻璃仅在熔融状态下具有导电性,因此必须使用燃烧过程中的化学能来启动熔融周期。最后,在间歇性事件或停电期间,还需要燃烧的熔融能量来补充风和太阳能的可再生能源。因此,实际上,电压混合炉似乎是为大多数炉子运行的连续,不间断的生产计划提供能源的最合乎逻辑的选择。为了最大程度地减少燃烧中的碳足迹,需要蓝色或绿色的氢,包括空气产品在内的工业天然气供应商正在开发几个这样的项目来构建供应和分销基础设施。那里技术复杂性与化学和电熔化的整合以及规模上的商业生存能力有关,以减少碳或无碳工艺,使大规模采用此类技术具有挑战性。
我们使用多少能量?麦当劳书中最令人惊叹的见解之一就是世界现在实际使用的能量是多少。数字令人震惊!全球,我们每天消耗约1亿桶石油。是40亿加仑(十亿加仑!)“……足以让尼亚加拉瀑布奔跑两个小时。”现在这是很多石油。但实际上有多少能量?麦当劳解释说:“想想埃及的大金字塔,这是地球上最大的纪念碑。基于构成金字塔的所有石头的质量以及在施工过程中抬高这些石头的高度,纯粹的能量术语,已经计算出大约2.4万亿焦耳的焦点来建造这些结构。” (公制的焦耳是用于提起1公斤向上1米的能量。)“被翻译成石油,可以用约400桶建造金字塔……不到世界石油生产的一秒钟。因此,如果我们从各种来源(化石燃料,水力,地热,风,太阳能,核,核,核,核,核,核,核,它)每年都有超过200万个金字塔的工作!古埃及人花了二十年的时间建造一次。”如此大量的能量需要用清洁的来源代替:哇,这是一项艰巨的任务!,但正如麦当劳坚持认为,现在完全有可能。