液晶弹性体 (LCE) 是一类由松散交联的聚合物网络组成的形状记忆聚合物,在从向列相到各向同性相的转变过程中表现出可逆的形状变化。[1] 由于它们具有类似肌肉的工作密度和收缩应变 [10–14],并且能够打印或图案化为各种几何形状,它们已越来越广泛地用作软体机器人、[2–4] 可穿戴计算和触觉 [5,6] 和形状变形物质 [7–9] 中的执行器。[15,16] 在大多数机器人和工程应用中,基于 LCE 的执行器使用外部热源进行热刺激,或通过焦耳加热使用集成线或嵌入式渗透粒子网络进行电刺激。先前的研究主要集中在通过焦耳加热来加热 LCE,[6,12,13,17,18] 其中许多应用使用液态金属[19–21] 和波浪电子[12,13,22,23] 作为加热元件。然而,这些方法的一个关键限制是它们依赖于开环加热和被动冷却。这导致温度变化缓慢,并且对控制 LCE 执行器响应速度和曲线的能力有限。具体而言,由于 LCE 的热导率低至 0.3 W m − 1 K − 1[20],导致驱动速度可能很慢;由于热传递是通过对流而不是传导进行的,冷却速度受到极大限制。后者导致冷却时间可能需要激活时间的 5 倍[12,24] 10 倍[13] 甚至 50 倍[25] 才能使 LCE 在环境条件下冷却并恢复到其原始状态。此外,由于温度升高幅度更大,更快的驱动速度需要更长的冷却时间。[25] 为了减少加热时间,人们嵌入了液态金属液滴等软填料来提高这些结构的热导率。[6] 冷却时间的问题仍然存在,加热和冷却时间的差异取决于传导(加热)和对流(冷却)之间传热速率的差异;需要更智能的方法来解决这个问题。最近有人努力通过新的刺激方法来提高 LCE 执行器的速度和控制,[26] 尽管其中大多数方法都会引入显着的机械
摘要。在能源组合中可再生能源的份额不断增长,电力市场的自由化极大地影响了发电机的运行。从基于化石燃料的能源系统到可再生能源的过渡将大大改变能源市场,从而为储能系统提供重要的机会。在接下来的几年中,预计将预见到大量存储容量被整合到电网中,以刮去需求峰值,减轻价格波动并为电网提供服务。在这种情况下,要正确管理这些关键技术,从而保证操作的经济可行性,必须正确地优化调度并定义最佳计划。本文考虑了电池能量存储(BES)来研究存储技术的调度优化问题。BES的完整模型是开发的,特别是考虑到DOD(排出深度)对循环总数的影响,这显着影响降解,以及由于joule效应的损失的影响,导致电流率对总效率的影响。实施的优化基于混合整数线性编程方法(MILP)方法,收费状态(SOC)的离散化以及额定容量的持续更新,直到达到最大可允许的淡入淡出为止。不同的方案,显示了拟议方法在最大化净运营利润或根据市场盈利能力最小化损失的有效性。
多年来,许多纽约州环境保护部 (NYSDEC) 工作人员与外部组织一起努力制定了这一战略。NYSDEC 工作人员包括主任 Riexinger、局长 Batcheller 和 Farquhar、鸟类部门负责人 John Ozard、栖息地和通道部门负责人 Marcelo del Puerto、野生动物多样性部门负责人 Dan Rosenblatt、区域经理 Wasilco 和 Joule、Heidi Kennedy、Irene Mazzocchi、Paul Novak、Mike Morgan、Jed Hayden、Lisa Masi、Katherine Barnes、Bonnie Parton、Oliver Riley、Matt Palumbo 和 Ashley Meyer。外部组织和工作人员包括纽约奥杜邦协会 (Mike Burger、Andy Hinickle、Jillian Liner)、康奈尔鸟类学实验室 (Ron Rohrbaugh、Sara Barker)、佛蒙特生态系统研究中心 (Roz Renfrew)、美国森林服务局 (Finger Lakes 国家森林公园 - Greg Flood)、纽约州立大学布罗克波特分校 (Greg Lawrence、Chris Norment)、纽约州自然遗产计划 (Matt Schlesinger、Tim Howard)、自然资源保护局 (Kim Farrell、Val Podolec) 和美国鱼类和野生动物管理局 (Scott Lenhart、Chelsea Utter)。感谢所有参与这项工作的人,非常感谢你们的贡献。
引言。不可逆性从时间对称物理定律中产生是当代物理学的核心问题。事实上,物理学中存在几种解决不可逆性的方法:统计力学方法[1-3];信息论对逻辑上不可逆任务的描述[4-6];经典和量子热力学第二定律[2,7-9]。在所有这些情况下,描述不可逆现象的定律和微观动力学的时间反演对称性之间都会产生矛盾。在本文中,我们将不可逆性表达为这样一种要求:一种转变是可能的(即,它可以被一个循环运行的系统无限好地实现),而它的逆转变则不能。考虑到焦耳的实验[2],可以直观地理解这种不可逆性的起源:虽然只能通过机械方式将一定体积的水加热,但不可能通过相同的方式将其冷却。更一般地,如果一个变换可以通过一个循环工作的机器任意地实现,那么对于逆变换,情况可能就不一样了,即使在
数千年来,人类文明一直使用接近 0 C 的温度。随着第 1 章和第 6 章中描述的高效冷却器的发展,达到显著更低温度和低温范围的能力在过去两个世纪才成为可能。具体来说,使用低温可提供表 1 所列的众多益处。低温技术的应用利用了其中一种或多种益处。在某些情况下,益处是如此显著,以至于使用环境温度解决方案完全不切实际。一个重要的例子是使用超导磁体进行磁共振成像 (MRI)。要获得合理的分辨率,需要 1.5 T 的磁场。使用铜电磁铁在室温下在人体体积上产生这样的场,需要兆瓦级的功率来克服导线中的电阻损耗,还需要大量的水流来提供必要的冷却以去除焦耳加热产生的热量。
相对论温度电子高于0.5 MeV的温度电子通常以大约10 18 w/cm 2的激光内部产生。以非相关强度运行的高重复速率激光器(≃1016 w/cm 2)的产生是针对紧凑型,超短,台式电子源的基础主教。能够利用激光 - 血浆相互作用的不同方面的新策略对于降低所需的强度是必要的。我们在这里报告,一种新型的微螺旋体动态靶标结构技术,能够在蓬代尺度(10 18 w/cm 2)所需的强度的1/100中产生200 keV和1 meV电子温度,以产生相对论电子温度。将这种方法与“非理想的” Ultrashort(25 fs)脉冲以4×10 16 W/cm 2的形式结合了固定,优化的尺度长度和微观访问的概念,可实现两样式的衰减增强的电子加速度(25 fs)脉冲。具有KHz的射击可重复性,这种精确的原位靶向物可以通过毫升joule类激光器产生高达6 MeV的质量质量束状电子发射,这对于所有科学领域的时间分辨,微观研究都可以进行转化。
参考文献1。彭博新能源金融(NEF)。“电动汽车前景2020”,纽约,2020年。可用:https:/about.bnef.com/electric-vehicle-unlook/。2。Mitchell,A。(2020)。“电动汽车如何驱动硫酸镍市场”,伍德马克齐,2020年6月8日。3。Woodmackenzie Power&Renewables 2021。“仪表板:通过市场和细分市场划分的能源和能源。” 4。Gupta,M。“ Woodmac:一种新的电池化学将在2030年之前领导固定的储能市场”,Greentech Media,2020年8月20日。5。EPRI(2017)。 基于电池的电网存储系统的回收和处置:初步调查。 Palo Alto,CA:3002006991。 6。 Winslow,K.M。等。 (2018)。 “对废物锂离子电池的日益关注和潜在管理策略进行了审查。”资源,保护与回收,129,263-277。 7。 Chen,M。等。 (2019)。 “回收寿命末电动汽车锂离子电池。”焦耳,3,2622–2646。EPRI(2017)。基于电池的电网存储系统的回收和处置:初步调查。Palo Alto,CA:3002006991。6。Winslow,K.M。等。(2018)。“对废物锂离子电池的日益关注和潜在管理策略进行了审查。”资源,保护与回收,129,263-277。7。Chen,M。等。 (2019)。 “回收寿命末电动汽车锂离子电池。”焦耳,3,2622–2646。Chen,M。等。(2019)。“回收寿命末电动汽车锂离子电池。”焦耳,3,2622–2646。
许多软机器人组件需要高度可拉伸的导电材料才能正常运行。这些导电材料通常用作传感器或热响应材料的加热器。然而,可拉伸材料很少,它们可以承受软机器人通常经历的高应变,同时保持焦耳加热所需的电气特性(例如,均匀的电导率)。在这项工作中,我们提出了一种含有液体和固体夹杂物的硅树脂复合材料,它可以在经历 200% 的线性应变时保持均匀的电导率。这种复合材料可以铸造成薄片,使其能够包裹在热响应软材料周围,这些软材料在加热时会增加体积或可拉伸性。我们展示了这种材料如何为电控形状变化的软机器人致动器以及仅由电刺激驱动的全硅树脂致动系统开辟可能性。此外,我们还表明这种可拉伸复合材料可用作其他应用中的电极材料,包括线性响应高达 200% 应变且信号噪声接近于零的应变传感器。
简历 Tae-Woo Lee 是韩国首尔国立大学材料科学与工程系的教授。他于 2002 年在韩国韩国科学技术院 (KAIST) 获得化学工程博士学位。他于 2002 年加入美国朗讯科技贝尔实验室担任博士后研究员,随后在三星高级技术学院担任研究人员 (2003-2008)。他曾担任韩国浦项科技大学 (POSTECH) 材料科学与工程系助理教授和副教授,直至 2016 年 8 月。他获得过许多宝贵的奖项。他是 280 篇论文的作者和合著者,论文发表在《Science》、《Nature》、《Nature Photonics》、《Nature Nanotechnology》、《Nature Biomedical Engineering》、《Science Advances》、《Nature Communications》、《Joule》、《PNAS》、《Energy and Environmental Science》和《Advanced Materials》等高影响力期刊上。他还是 423 项专利技术的发明人或共同发明人。他目前担任《Advanced Materials》(Wiley)、《FlatChem》(Elsevier)、《EcoMat》(Wiley)、《Chem & Bio Engineering》(ACS)、《Materials Today Electronics》(Elsevier)、《Nano Convergence》(Springer)和《Semiconductor Science and Technology》(IOP)等期刊的编委会成员,以及《Organic Electronics》(Elsevier)的副主编。他的研究重点是有机、有机-无机杂化钙钛矿和碳材料,以及它们在柔性电子、印刷电子、显示器、固态照明、太阳能转换设备和仿生神经形态设备中的应用。