摘要:CMOS光二极管已在微系统应用中广泛报道。本文使用COMSOL多物理学对P – N结光电二极管的设计和数值模拟,用于三种CMOS技术(0.18 µm,0.35 µm,0.35 µm和0.7 µm)和三个不同的P – N交界结构:N+/P-Substrate,P-Substrate,P+/N-N-Well/n-Well/n-Well/well/p-Subsulate。对于这些模拟,根据不同的技术设定了深度连接和掺杂剂浓度。然后,每个phodiode均在分光光度法上进行了分光光度法的特征,响应性和量子效率。获得的数值结果表明,当需要可见的光谱范围时,0.18和0.35 µM CMOS技术是具有效率最高峰的最高峰的技术,与0.7 µM技术相比。此外,比较了三个最常见的P – N垂直连接光电二极管结构。N+/p-Substrate Juints Photodiode似乎是可见范围内具有最高量子效率的一种,与文献一致。可以得出结论,光电二极管的特征曲线和暗电流值与文献中的报告一致。因此,这种数值方法允许预测光电二极管的性能,帮助在其微加工之前为每个必需的应用程序选择最佳的结构设计。
对称性是我们理解自然基本定律的关键。对称性的存在意味着物理系统在特定变换下是不变的,这种不变性可能会产生深远的影响。例如,对称性论证表明,如果对行动的激励是均衡的,系统将保持其初始状态。在这里,我们将这一原理应用于量子比特链,并表明可以设计其汉密尔顿量的对称性,以便从本质上保护量子信息免受弛豫和退相干的影响。我们表明,该系统的相干性相对于其各个组件的相干性得到了极大增强。这种量子比特链可以使用由相对较少数量的超导约瑟夫森结组成的简单架构来实现。
本书包含从真实且备受推崇的来源获得的信息。已经努力发布可靠的数据和信息,但作者和出版商不能对所有材料的有效性或使用后果承担责任。作者和出版商试图追踪本出版物中复制的所有材料的版权持有人,如果尚未获得此形式出版的许可,则向版权持有人道歉。如果尚未确认任何版权材料,请写信并告诉我们,以便我们将来在任何重印版中纠正。
美国伊利诺伊州芝加哥的芝加哥大学医学中心与生物科学; B希望之城综合癌症中心,美国加利福尼亚州杜阿尔特;日本纳戈亚的C Aichi癌症中心医院; D临床癌症研究所Krankenhaus Nordwest,德国法兰克福;美国马萨诸塞州马萨诸塞州马萨诸塞州癌症中心,美国马萨诸塞州,美国;美国加利福尼亚州圣塔莫尼卡圣莫尼卡的FCLA,美国加利福尼亚州圣莫尼卡; G Weill Cornell Medicine,纽约,纽约,美国;韩国首尔大学医学院的H Yonsei癌症中心;我的国家癌症中心医院东部,日本千叶;美国印第安纳州印第安纳波利斯的J Eli Lilly&Co; K消化肿瘤学,大学医院Gasthuisberg Leuven和Ku Leuven,Leuven,Belgium,Belgium†也同样贡献。在本文末尾可以找到潜在的利益冲突的披露。
摘要:本文利用ATLAS TCAD器件模拟器从模拟、RF性能的角度探讨了环绕栅极无结渐变通道 (SJLGC) MOSFET 的潜在优势。系统地研究了横向渐变通道对电位、电场、载流子速度、通道能带的影响。本研究主要强调了 SJLGC MOSFET 的优越性能,表现出更高的漏极电流 (ID )、跨导 (gm )、截止频率 (f T )、最大振荡频率 (f max )、临界频率 (f K )。由于通道渐变的影响,SJLGC MOSFET 的漏极电流提高了 10.03%。SJLGC MOSFET 的 f T、f max 和 f K 分别提高了 45%、29% 和 18%,表现出更好的 RF 性能。 SJLGC MOSFET 相对于 SJL MOSFET 的优势进一步得到阐明,其固有电压增益 (gm / g ds ) 提高了 74%,表明其在亚阈值区域具有更好的应用。但在亚阈值区域,SJLGC MOSFET 的跨导产生因子小于 SJL MOSFET。由于较低的栅极间电容 (C GG ) 的影响,SJLGC MOSFET 的固有栅极延迟 (ζ D ) 与 SJL MOSFET 相比较小,表明其数字开关应用更好。模拟结果表明,SJLGC MOSFET 可以成为下一代 RF 电路的有力竞争者,该电路涵盖了 RF 频谱中的广泛工作频率。
进一步扩展工作,以匹配 nMOS 和 pMOS 的阈值电压,从而实现反相电路。阈值电压匹配是通过校准金属功函数和器件沟道长度来匹配阈值电压来实现的。计算了不同栅极长度匹配的阈值电压,其中 nMOS 为 60nm,而 pMOS 为 47nm。nMOS 的功函数值为 4.3eV,pMOS 为 4.461eV。此时的阈值电压几乎
1987 年,在 PM 10 标准通过后不久,瑟尔斯谷规划区(瑟尔斯谷)就被认定为未达标区域。瑟尔斯谷的边界包括三个空气区的部分区域:圣贝纳迪诺县空气污染控制区(现为莫哈维沙漠空气质量管理区)的特罗纳规划区、大盆地统一空气污染控制区(区)的科索交界处规划区和克恩县空气污染控制区(现为东克恩空气污染控制区)的印第安维尔斯谷规划区(印第安维尔斯谷)。联邦《清洁空气法案》(法案)第 110(a)(1) 条要求在 1988 年之前向美国环保署提交一份 PM 10 达标计划,美国环保署将该截止日期延长至 1991 年 11 月。1991 年 11 月 25 日,三个空气区联合通过了瑟尔斯谷的 PM 10 未达标计划。
摘要:我们在计算上研究了分子连接在单分子极限下探测化学反应性的效用。为此,我们采用了与量子传输模拟结合的分子动力学(MD)来研究经典的Diels- alder反应,但在纳米级连接处,在纳米级交界处,其中反应物是纳米构成的,并且反应对在机械上被机械带到附近。为了捕获反应性事件,MD采用密度功能紧密结合方法来解释原子间相互作用。为了了解这种新型化学环境中反应背后的热力学驱动力,我们重建了沿反应坐标的平均力的潜力,并将其分解为能量和熵的贡献。分析表明该过程是熵惩罚的,这使得反应屏障对温度和反应物刚性的变化敏感。模拟进一步表明,在纳米结中,可以通过控制电极的接近度来机械地操纵反应性程度。出乎意料的是,对于最佳电极分离,纳米配置反应中的熵和能量成本与散装中观察到的熵成本相吻合,在这两个巨大不同的反应性环境中进行的测量之间建立了明确的连接。最后,我们展示了如何使用电导测量来实验以单一实体极限监测过程。■简介