美学与性能询问选择3个学期的小时:ART 181,182,250; Engl 207,208,310; HKIN 342; MCOM 211、221、231、369; Musi 110;菲尔370; SAMC 111,370; THTR 130,161;任何音乐合奏;任何音乐课。文化和语言询问选择3个学期的小时:Anth 210,395;教育496; Engl 334,340,482; Gree 235;赫布245;历史237; IDIS 201; pols 237; Rels 235,245; Soci 395;任何世界语言与文化课程(Chin,Fren,Japa,Russ,Span)。历史和档案查询选择3个学期的时间:ART 237,238; Econ 306; GENV 312;历史107、108、135、306、339、391; Musi 131,132;护士230;菲尔203、314、421; pols 391; PSYC 408; Rels 320、351、352、475; SAMC 112; Soci 391; THTR 331,332。定量和计算查询选择3个学期的时间:BUSI 176,275; Chem 104,112; CMPT 140;数据100; Econ 176,275; GENV 282,382,383;数学102、108、123、150、190、191;物理112; PSYC 207; Soci 207; SOCS 305,383。社会和全球询问选择3个学期的时间:ANTH 101,302; BUSI 311; Econ 311,354;教育345,365; Engl 348; GENV 111,212,322,354; Ling 101,210,302; MCOM 111,171,251,313,315,317,372,491;护士227; Phil 208,220,310,320; pols 101,211,310,312,320,493; PSYC 399; Rels 271,272,285,381,384,386,476; Soci 101; THTR348。
研究提供了有关在矿物富流体界面在一系列条件下的镁铁矿沉淀机理和动力学的新见解,18
摘要:持续的发光材料在智能信号,抗矛盾和体内成像等各个领域都有应用。但是,缺乏对控制持续发光的确切机制的透彻理解,因此很难开发优化它的方法。在这里,我们提出了一个精确的模型,以描述Znga 2 O 4:Cr 3+的持续发光的各种过程,这是现场的主力材料。已经解决了一组速率方程,并且已经对电荷/放电和热发光测量进行了全局拟合。我们的结果建立了陷阱深度分布和余滴动力学之间的直接联系,并阐明了与Znga 2 O 4:Cr 3+纳米颗粒相关的主要挑战,确定了较低的陷阱概率和光学偏差,这是限制Znga 2 O 4:CR 3+的主要因素,并与大型Margin进行改进。我们的结果强调了准确建模对于未来余辉材料和设备设计的重要性。
图1:通过正交投影(绿色三角形)校正a)校正a)纠正预测,嘈杂和划分的浓度(蓝色三角形),b绿色三角形)b)在缩放模型的缩放范围的缩放范围的范围(缩放量表)中的缩放范围(缩放量表)的正交投影()缩放量表的标准循环范围()浓度空间和与来自A)的thogonal投影进行了比较。
配体对于调整溶液中金属复合物的反应性至关重要。1,2不稳定或半比例的配体可能发挥作用,以增强3 - 5个直接,6 - 8或抑制9金属中心的反应性,从而影响更多的效率和更多的选择性催化。研究不稳定配体的物种和交换动力学对于了解金属配合物在溶液中的反应至关重要。通常通过紫外可见或核磁共振(NMR)光谱法监测配体与金属中心的结合和交换。10 - 14这些方法提供了有关复合物配体交换和旋转状态的信息。但是,他们通常仅报告溶液中的主要物种,并且不能有效地跟踪低丰富的复合物。此外,NMR对顺磁复合物的分析需要复杂的方法。15相反,质谱法(MS)与电喷雾电离(ESI)相结合,具有高灵敏度,并使得可以监测次要物种。它用于研究与不稳定配体的金属配合物的形态,无论金属的性质或自旋状态如何,或遵循由金属 - 有机络合物催化的反应。16 - 23
参考:Sun S.R.,Wang H.X.,Bogaerts Annemie.-化学降低化学co₂化学动力学:应用于滑动弧等离子体等离子体的等离子体来源科学技术 /物理研究所[Londen] - ISSN 0963-0252-29-29:29:2(2020),0220),0250) https://doi.org/10.1088/1361-6595/ab540f引用此参考:https://hdl.handle.net/10067/10067/1671350151166216621665141
富 Ge GeSbTe (GGST) 合金的开发显著提高了相变存储技术所需的高温稳定性。先前对 Sb/Te 比小于 1(Sb = Te , 1)的 GeSbTe (GST) 材料中 Ge 富集的研究强调了立方 Ge 和立方 GST 相的分离。这种分离的立方 GST 相是亚稳态的,呈现出多晶结构,其晶粒边界无序,可能导致结构弛豫,进而导致漂移现象。在这项工作中,利用电阻率测量、拉曼光谱和原位 x 射线衍射分析,我们首次证明 Sb/Te 比大于 1(Sb = Te . 1)的 GGST 在退火时会直接形成具有高生长速度的 GST 六方相,绕过立方亚稳态相。结合 Ge 富集,Sb = Te 成核的活化能值增加。 1 GGST 合金确保了非晶相的高稳定性。最后,氮的引入进一步稳定了系统以防止结晶,而不会损害高晶体生长速度和 Sb = Te 合金中稳定的 GST 六方相的形成。1. 这些结果证明了可以调整富 Ge GeSbTe 合金中偏析相的晶体结构,将非晶相在高温下的稳定性与目标 GST 相的高结晶速度和均匀性(具有较大的晶粒)相结合。