当代的大规模视觉语言模型(VLM)具有强大的表示能力,使它们无处不在,可以增强图像和文本理解任务。他们经常以对比的方式受到大量图像和相应的文本字幕的对比方式进行训练。尽管如此,VLMS经常在构图推理任务上挣扎,这些任务对对象及其属性的复杂相互作用进行了精细的了解。此失败可以归因于两个主要因素:1)对比的方法传统上专注于从现有数据集中开采负面示例。但是,该模型可能不难区分阳性检查。替代采矿的替代方法是负样本2),但现有的生成方法主要集中于生成与给定图像相关的硬性负面文本。在另一个方向上进行挖掘,即生成与给定文本相关的负面图像样本已被忽略。为了克服这两种限制,我们提出了一个框架,不仅在两个方向上矿山,而且在这两种方式(即图像和文本)中产生了有挑战性的负面样本。利用这些生成硬性负样本,我们在涉及多模式综合推理的任务中显着提高了VLMS的性能。我们的代码和数据集在https://ugorsahin.github.io/enhancing-- vlm.html上发布。
摘要 本文综合了教师的观点、学习者产出和学习者印象的分析、材料开发的想法以及总结性研究者的观察结果,这些观察源于在美国两个大学和成人留学环境中实施为期一学期(约 8 周的教学)的基于语料库和数据驱动的英语作为第二语言 (ESL) 教学。案例研究 1 调查了学习者和教师对语料库教学在培养专门为中国访问学者群体设计的学术写作技能方面的有效性的态度。案例研究 2 采用混合方法、探索性调查,研究使用支架式学生工作表指导不同熟练程度的学习者在一所位于美国的非营利性私人机构为期一学期的留学项目中使用语料库和语料库工具的情况。该工作表旨在定期将基于语料库的课程和数据纳入课堂教学或家庭作业活动。结果表明,教师们对将语料库工具纳入自己的语言课堂教学中可能带来的巨大而有希望的好处充满热情。通过具体明确的学习目标和使用指导,语料库工具可以成为课程期间和课程结束后适合学生的宝贵资源。
视觉 - 语言变压器(VLT)最近显示出巨大的成功,但同时伴随着大量的计算成本,其中主要原因可以归因于大量的视觉和语言令牌。存在用于压缩VLTS的令牌修剪研究主要遵循基于单模式的方案,但忽略了对齐不同模态来指导令牌修剪过程的关键作用,从而导致重要的代币在另一个模态分支中错误地修剪一个模态。同时,现有的VLT修剪作品也缺乏基于不同输入样本动态压缩每一层的灵活性。为此,我们提出了一个名为M Ultodal的新颖框架,用于加速变化VLT的木质制成d ynamic t ynamic t oken p Runing(MADTP)。具体来说,我们首先引入了精心设计的多模式对齐指导(MAG)模块,该模块可以使相同语义概念的特征与不同的模式相结合,以确保修剪的代币对所有模式都不太重要。我们进一步设计了一种新型的dy-namic令牌修剪(DTP)模块,该模块可以根据不同的输入实例自适应地调节每个层中的令牌压缩比。对各种基准测试的广泛实验表明,MADTP可以显着确定多种模型的计算复杂性,同时保留竞争性能。值得注意的是,当将MADTP应用于NLVR2数据集中的BLIP模型时,可以将GFLOPS降低80%,而性能降低少于4%。该代码可在https://github.com/double125/madtp上找到。
➢这是一个欺骗深神经网络(DNN)的实验:在第二和第四张图像中,工程师仅保留了系统用于识别吉他和企鹅的系统的元素,并更改了其余的所有内容,以使系统仍然像吉他和企鹅一样“看到”他们。➢Goodfellow等人的作品。(2014)从普遍的扰动开始打开了进一步发展的大门(Moosavi-Dezfooli等人。2017)最近的一个像素攻击,该攻击显示了如何通过在输入图像中更改一个像素来欺骗神经网络。笔记本在这里一张像素攻击原始纸
联系方式:马丁·韦切夫教授,苏黎世联邦理工学院,瑞士,silq@inf.ethz.ch 背景:最近的努力已经将量子计算机改进到可以在某些任务上超越传统计算机的程度,这种情况被称为量子霸权。量子计算机运行量子算法,通常用低级量子语言 Silq 表示。我们发布了 Silq,这是第一种旨在从量子算法的低级实现细节中抽象出来的高级量子语言。Silq 在 GitHub(https://github.com/eth-sri/silq)上公开可用,并根据免费开源 Boost 软件许可证 1.0 获得许可。作为一项关键的创新,Silq 有助于弥合经典语言和量子语言之间的概念差距。因此,Silq (i) 降低了非专业量子程序员的入门门槛,(ii) 通常有助于简洁明了地表达复杂算法,以及 (iii) 促进了 50 多年来为传统计算开发的编程和分析技术向量子编程领域的技术转移。比较。虽然传统上量子算法通常以电路的形式指定,但量子语言更方便地将量子算法表达为源代码。然而,现有的量子语言迫使程序员在较低的抽象层次上工作,仍然本质上指定将量子操作明确应用于单个量子位的量子电路。因此,用这些语言实现量子算法是繁琐且容易出错的。相比之下,Silq 支持对量子算法的描述性视图,表达了程序员的高级意图。然后,将这些算法编译成低级量子电路成为二阶关注点,可以由专门的编译器处理,就像在传统编程语言中一样。我们的实验评估表明,Silq 程序比其他量子语言中的等效程序短得多(Q# 平均缩短 46%,Quipper 缩短 38%),同时仅使用一半的量子原语。因此,Silq 程序不仅更短,而且更易于读写,因为它们需要的原语和概念更少。大部分评估都集中在 Q# 上,因为 (i) 它是使用最广泛的量子语言之一,(ii) 我们认为它比 Cirq 或 QisKit 更高级,(iii) 2018 年和 2019 年的 Q# 编码竞赛提供了大量 Q# 实现,我们可以利用它们进行比较。
大型语言模型(LLMS)是非常大的深度学习模型,可根据大量数据进行重新训练。是句子的双向编码器表示,来自变形金刚(SBERT)的句子是基于变压器的DeNoising AutoCoder(TSDAE),生成查询网络(GENQ)和生成假伪标记(GPL)的改编。本论文项目旨在为瑞典法律判断开发语义搜索工具,以克服法律文件检索中传统关键字搜索的局限性。为此,使用高级培训方法(例如TSDAE,GENQ和GPL的改编),通过利用自然语言处理(NLP)(NLP)(NLP)(NLP)和精细的LLM来开发一种善于理解法律语言的语义细微差别的模型。要从未标记的数据中生成标记的数据,对其进行微调后使用了GPT3.5模型。使用生成模型的使用标记数据的生成对于该项目有效训练Sbert至关重要。已经评估了搜索工具。评估表明,搜索工具可以根据语义查询准确检索相关文档,并同样提高法律研究的效率和准确性。genq已被证明是此用例的最有效的训练方法。
摘要。视觉语言预处理(VLP)模型已在众多计算机视觉应用中被证明。在本文中,我们基于图像扫描和电子健康记录中的文本介绍,为医疗领域开发VLP模型,以促进计算机辅助诊断(CAD)。为了实现这一目标,我们介绍了MedBlip,这是一种轻巧的CAD系统,该系统启动了从架子冻结的预训练的图像编码器和大型语言模型中启动VLP。我们合并了一个MEDQFormer模块,以弥合3D医学图像和2D预训练的图像编码器和语言模型之间的差距。为了评估MEDBLIP的有效性,我们从五个公共阿尔茨海默氏病(AD)数据集中收集了30,000多个图像量:ADNI,NACC,OASIS,OASIS,AIBL和MIRIAD。在这个大规模的广告集中,我们的模型在健康,轻度认知障碍(MCI)和AD主题的零摄像分类中表现出了令人印象深刻的表现,并且还显示了其在M3D-VQA-AD数据集中的医学视觉问题An-Swering(VQA)中的能力。代码和预训练模型可在https://github.com/qybc/medblip上找到。
Layton,D。“ Chatgpt - 我们如何到达今天的位置 - GPT开发的时间表。” https://medium.com/@dlaytonj2/chatgpt-how-we-we-got-to-wher-we-we-are-today-a-timeline-timeline-fppt-development-f7a35dcc660e(2023)。Lubbad,M。“ GPT-4参数:无限制指南NLP的游戏规则改变者。”https://mlubbad.medium.com/the-ultimate-guide-to-gpt-4-parameters-verything-nything-to-to-to-to-to-to-about-about-about-about-about-about-nlps-changer-changer-109b87678555a(2023)。Shree,P。“开放AI GPT模型的旅程。”https://medium.com/walmartglobaltech/the-journey-open-open-ai-gpt-models-32d95b7b7fb2(2020)。
摘要本文介绍了Hanooman,这是一种生成的AI和大型语言模型聊天机器人,其灵感来自Hindu Geity Lord Hanuman。Hanooman旨在体现力量,敏捷性和奉献精神的素质,利用尖端的语言处理能力,为用户提供信息丰富且引人入胜的对话。我们探索了哈诺曼的概念框架,架构和培训程序,展示了其在各个领域的潜在应用。我们的评估结果表明,在响应准确性和上下文理解方面,Hanooman优于现有的聊天机器人,使其成为自然语言处理和人类计算机互动的有前途的工具。大语言模型(LLM)和生成AI是人工智能的重大进步,彻底改变了我们与技术的互动,生成内容和理解人类语言的方式。llms,在大量数据集中受过培训,在语言翻译,文本摘要,问题答案和创意写作等任务中表现出色。生成的AI(AI的一个子集)会产生自主输出,通常表现出惊人的创造力和连贯性。印度亿万富翁穆克什·安巴尼(Mukesh Ambani)与IIT孟买和其他八个印度技术学院合作,加入了AI竞赛,以推出“ Hanooman”,这是一集,该集合以22种印度语言培训了大型语言模型。关键字:哈诺曼,大语言模型,人工智能,生成AI1。简介