。CC-BY 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2025年1月13日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2025.01.13.632695 doi:Biorxiv Preprint
利什曼原虫是一种原生动物病原体,可导致利什曼病,这是一种被忽视的疾病,具有使人衰弱甚至可能危及生命的症状。利什曼原虫基因组非常动态,内容和结构均有变化。通常,这种高度变异(即可塑性),包括染色体和基因拷贝数变异、非整倍性和基因组重排,与其他生物体的 DNA 不稳定性有关。然而,在利什曼原虫中,这种固有的不稳定性可能被利用,不仅可以引入基因组异质性,还可以调节基因表达并产生增强适应性的特征。我们缺乏对这些寄生虫如何调节可塑性及其潜在后果的清晰而简洁的理解。因此,本研究课题的目的是汇总有关利什曼原虫利用基因组变异性为自己谋利的能力的重要报告,并收集有关基因组可塑性如何影响利什曼病的临床管理以及固有不稳定基因组的并发症对我们基因操作和研究这些非常规病原体的能力的值得注意的报告。拷贝数变异可以改变基因剂量,在利什曼原虫中,这些变化被认为促进了寄生虫种群的表型可塑性。在本研究课题中,Valdivia 等人报告了巴西利什曼病流行地区的寄生虫分离株之间的广泛基因组变异性,描述了在短短 2 年内种群中一种占主导地位的 L. infantum 核型被一个独特的亚群迅速取代。是否(以及哪些)环境因素可能导致种群中一种基因型相对于另一种基因型的扩张仍然未知。然而,这些分离株中保留的基因型多样性可能暗示着可选择的替代基因组库,这些基因组库可以响应外部刺激而快速扩增。尽管经常有关于利什曼原虫中 CNV 的报道,但这些变异对基因表达的影响和生物学后果也值得考虑,因为利什曼原虫似乎
直到 2015 年,阐明利什曼原虫蛋白质功能的功能丧失研究都依赖于通过同源重组进行基因破坏。随后,CRISPR/Cas9 革命影响到了这些原生动物寄生虫,只需一轮转染即可实现有效的基因组编辑。此外,LeishGEdit 的开发(一种基于 PCR 的工具包,用于使用 CRISPR/Cas9 生成敲除和标记系)使基因组编辑更加直接有效。在此系统中,质粒 pTB007 被递送至利什曼原虫,在 b-微管蛋白基因座中进行游离表达或整合,并稳定表达 T7 RNA 聚合酶和 Cas9。在南美洲,尤其是在巴西,利什曼原虫 (Viannia) braziliensis 是皮肤利什曼病最常见的病原体。与利什曼原虫相比,L. braziliensis b-微管蛋白基因座表现出显著的序列差异,这阻碍了 pTB007 的有效整合和 Cas9 的稳定表达。为了克服这一限制,pTB007 中存在的 L. major b-微管蛋白序列被利什曼原虫 (Viannia) b-微管蛋白保守序列取代,从而产生了 pTB007_Viannia 质粒。这一修改使 pTB007_Viannia 盒式磁带成功整合到 L. braziliensis M2903 基因组中,并且计算机预测表明这也可以在其他 Viannia 物种中实现。通过敲除鞭毛蛋白 PF16 来评估 Cas9 的活性,这导致这些转染子中出现不动表型。内源性PF16也成功被mNeonGreen标记,并采用基因座互补策略将PF16基因的C端标记拷贝返回到原始基因座,从而恢复游泳能力。
利什曼病是拉丁美洲、非洲、亚洲和欧洲的主要公共卫生问题之一。由于缺乏人用疫苗和有效的媒介控制计划,化疗成为控制所有形式该疾病的主要策略。然而,现有药物的高毒性、治疗药物的选择有限以及耐药性寄生虫菌株的出现是与化疗相关的主要挑战。目前,只有少数药物可用于利什曼病治疗,包括五价锑化合物 (SbV)、两性霉素B及其制剂、米替福新、硫酸巴龙霉素和羟乙基磺酸喷他脒。除了药物毒性之外,利什曼病的治疗失败也是一个严重的问题。耐药性寄生虫的出现是治疗失败的原因之一,并且与该属寄生虫的多样性密切相关。由于基因组具有巨大的可塑性,抗药性可以通过改变不同的代谢途径产生,这表明抗药性机制是多因素的,极其复杂。遗传变异和基因组可塑性不仅导致现有药物存在局限性,而且使寻找新药变得具有挑战性。在这里,我们研究了阻碍药物发现的寄生虫的生物学特性。
利什曼病是拉丁美洲、非洲、亚洲和欧洲的主要公共卫生问题之一。由于缺乏人用疫苗和有效的媒介控制计划,化疗成为控制所有形式该疾病的主要策略。然而,现有药物的高毒性、治疗药物的选择有限以及耐药性寄生虫菌株的出现是与化疗相关的主要挑战。目前,只有少数药物可用于利什曼病治疗,包括五价锑化合物 (SbV)、两性霉素B及其制剂、米替福新、硫酸巴龙霉素和羟乙基磺酸喷他脒。除了药物毒性之外,利什曼病的治疗失败也是一个严重的问题。耐药性寄生虫的出现是治疗失败的原因之一,并且与该属寄生虫的多样性密切相关。由于基因组具有巨大的可塑性,抗药性可以通过改变不同的代谢途径产生,这表明抗药性机制是多因素的,极其复杂。遗传变异和基因组可塑性不仅导致现有药物存在局限性,而且使寻找新药变得具有挑战性。在这里,我们研究了阻碍药物发现的寄生虫的生物学特性。
摘要:有效疫苗的缺乏和对当前治疗方法的耐药性的产生凸显了对新型抗利什曼原虫药物的迫切需求。鞘脂代谢被认为是利什曼原虫特异性靶点的有希望的来源,因为这些脂质是真核生物质膜的关键结构成分,并参与不同的细胞事件。肌醇磷酸神经酰胺 (IPC) 是利什曼原虫中的主要鞘脂,是 IPC 合酶 (IPCS) 介导的反应的产物。抗组胺药富马酸氯马斯汀已被确定为 L. major 中的 IPCS 抑制剂和体内强效的抗利什曼原虫。在这里,我们试图进一步研究这种化合物在更易处理的物种 L. mexicana 中的靶点,采用结合基因组学、蛋白质组学、代谢组学和脂质组学技术以及分子和生化研究的方法。虽然数据表明对富马酸氯马斯汀的反应基本保持不变,但发现了鞘脂代谢以外的意外干扰。此外,虽然删除编码 Lmx IPCS 的基因在体外影响不大,但它确实影响了富马酸氯马斯汀的疗效,更重要的是,影响了体内致病性。总之,这些数据表明氯马斯汀确实抑制了 Lmx IPCS 并导致相关的代谢紊乱,但其主要目标可能在其他地方。关键词:利什曼原虫、肌醇磷酸神经酰胺合酶、富马酸氯马斯汀、多组学、CRISPR-Cas9、热蛋白质组学分析
图 1 布氏锥虫 PCF 中的 GFP 失活。(a)对组成性表达胞浆 eGFP 的布氏锥虫进行荧光流式细胞术分析。在用 20 μ g(无 Cas9、Cas9/gRNA GFP1、Cas9/gRNA GFP2、Cas9/gRNA GFP3)或 60 μ g(Cas9/gRNA GFP2)来自 IDT 的 RNP 复合物转染后 24 至 72 小时随时间监测 GFP 荧光,条形图显示用不同向导转染后 72 小时 GFP 阴性细胞的百分比(n = 3)。采用 Prism 软件进行统计分析,采用 t 检验(非配对、正态分布、参数检验和双尾)。显着性水平(p 值)用星号表示。 (b)上图显示了允许 e Sp Cas9 在大肠杆菌中表达的质粒的示意图。蓝色框表示蛋白质 N 端和 C 端的两个多组氨酸序列,红色框表示 TEV 和肠激酶 (EK) 蛋白酶的切割位点,灰色框表示三个核定位信号 (NLS),黑色框表示 FLAG 表位的三个重复,橙色框表示 e Sp Cas9 编码序列。下图显示了在用来自 IDT 或实验室纯化 (Lab) 的 RNPs 复合物 (无 Cas9、20 μ g Cas9/gRNA GFP2、40 μ g Cas9/gRNA GFP2、40、60 和 80 μ g Cas9/gRNA GFP2) 转染后 72 小时监测的表达 GFP 的 T. brucei 的荧光流式细胞术分析。(c)不再表达 GFP 的克隆中 GFP 基因的一部分的序列比较。该序列仅显示 GFP2 向导 RNA 所针对的区域。灰色框(H1 和 H2)突出显示可能用于 MMEJ 修复的同源区域。由实验室纯化的 Cas9 失活产生的序列和来自商业 Cas9 的序列分别标记为 Lab 和 IDT。下面显示了 Dc6 和 Ba10 克隆的相应色谱图(置信区间 95%— p 值样式:0.1234 (ns);0.0332 (*);0.0021 (**);0.0002 (***);< 0.0001 (****))。
背景:利什曼原虫是一种细胞内原生动物寄生虫,它使用复杂的方法破坏哺乳动物宿主巨噬细胞的先天免疫反应。已发现许多因素会影响寄生虫致病性的严重程度。其中一个因素是 GP63,它是一组破坏宿主细胞信号传导机制的金属蛋白酶。目的:本研究旨在通过 CRISPR-Cas9 构建 PX-LMGP63 载体,用于利什曼原虫中的 GP63 基因敲除,作为一种潜在的利什曼化方法。方法:根据 GP63 的 mRNA 序列设计一对 gRNA。然后将退火引物克隆到线性化载体 PX-459 中并转化到 DH5 A 感受态细胞中。然后,使用基因特异性和载体引物进行 PCR 检测以确认菌落。此外,对构建的质粒进行测序以进行最终确认。结果:PCR证实了预期大小为270的条带。质粒测序显示gRNA789已连接到载体上。构建的结构被命名为PX-LMGP63,下一步将转染到前鞭毛体细胞中。结论:由于皮肤利什曼病在大多数国家流行并成为公共卫生问题,并且缺乏有效的利什曼病疫苗,使用CRISPR方法可能使未来获得有效的疫苗成为可能。
同源重组 (HR) 与基因组复制有着密切的关系,无论是在修复可能阻止 DNA 合成的 DNA 损伤期间,还是在解决复制叉停滞时。最近的研究让我们想知道 HR 是否在复制真核寄生虫利什曼原虫的基因组中发挥着更为核心的作用。关于 HR 基因是否必需,出现了相互矛盾的证据,而全基因组图谱为 DNA 复制起始位点(称为起源)的非正统组织提供了证据。为了回答这个问题,我们采用了 CRISPR/Cas9 和 DiCre 的组合方法来快速生成和评估利什曼原虫中 RAD51 和三种 RAD51 相关蛋白的条件性消融的影响。使用这种方法,我们证明任何这些 HR 因子的丧失都不会立即致命,但在每种情况下,生长都会随着时间的推移而减慢,并导致 DNA 损伤和具有异常 DNA 含量的细胞的积累。尽管存在这些相似之处,但我们表明,只有 RAD51 或 RAD51-3 的缺失才会损害 DNA 合成并导致全基因组突变水平升高。此外,我们还表明这两个 HR 因子的作用方式不同,因为 RAD51 的消融(而不是 RAD51-3)对 DNA 复制有重大影响,导致主要起点处的起始丧失和亚端粒处 DNA 合成增加。我们的工作澄清了有关 HR 对利什曼原虫生存的重要性的问题,并揭示了 RAD51 在微生物真核生物基因组复制程序中意想不到的核心作用。
利什曼病是指具有广泛表现的疾病;并且有三种主要的疾病形式,皮肤,粘膜皮肤和内脏。利什曼病是一种疾病,其中一种是原生动物剂,即载体传播。内脏利什曼病(VL)是最严重的形式,如果不治疗,可能会严重威胁生命。vl可能是由伊朗利什曼尼亚·多诺瓦尼(Leishmania Donovani)综合体的成员引起的,利什曼原虫(Leishmania Infantum)被认为是VL的主要病因,导致人畜共患病的VL形式。我们作品的两个主要目标遵循了我们先前的血清流行病学和昆虫学调查,是对感染Peo-Ple,狗和沙子的利什曼原虫物种进行系统发育分析的表征和进行系统发育分析。在整个2017年,从1月至12月收集了样品,因此从人类和狗那里收集了血液样本,而用粘性陷阱收集了沙蝇样品。DNA,10%的血清阴性人类样品以及所有收集的沙蝇均遭受kDNA-PCR,以追踪寄生虫。总共30个样本,包括20种人类样品,8个狗样品和2个沙蝇样品,对L的kDNA基因呈阳性。婴儿。序列以研究六个分解的L之间的遗传多样性。婴儿。基于kDNA,l的系统发育研究。婴儿表现出高水平的遗传多样性和宿主之间的关系,寄生虫的地理起源及其遗传多样性。