L. donovani和l. int。婴儿感染与广泛的临床光谱相关,从无症状病例到具有高死亡率的内脏利什曼病(VL)。临床表现,例如Kala-azar真皮利什曼病(PKDL)和内脏利什曼病菌相关的胞菌细胞淋巴淋巴结症模因症(VL相关的HLHH-MIMIC),进一步有助于临床表现的多样性。这些临床变异因宿主的免疫反应与寄生虫的逃逸机制之间的复杂相互作用而错综复杂。这项叙述性综述旨在阐明与每种临床表现相关的潜在免疫机制,这是在过去5年内从已发表的文献中提取的。特定的注意是针对先天性免疫误差并获得免疫剂的患者的内脏利什曼原虫sinfection。在VL中,寄生虫利用各种免疫逃避机制,包括免疫检查点,导致主要抗炎性环境,利用寄生虫存活。相反,将近70%的个体能够安装有效的促炎性免疫反应,形成含有寄生虫的肉芽肿。尽管如此,某些患者可能会在免疫抑制后会经历该疾病的重新激活,从而挑战了当前对寄生虫的理解。患有艾滋病毒的人和那些具有先天性免疫力的人会出现更严重的感染过程,通常具有较高的复发率。因此,至关重要的是,在疾病复发和VL-与MIMIM的患者中排除原发性和获得的免疫降低。由于临床相似性,VL和HLH之间的区别可能具有挑战性,这表明称为VL-相关HLH的病态实体可能代表了症状性VL的严重表现,应认为更准确地将这种情况称为VL与VL相关的HLH-MIMIMIMIMIM。因此,在患有HLH的患者中不包括VL是必不可少的,因为适当的抗菌治疗可以逆转免疫失调。对利什曼原虫感染的免疫宿主相互作用的全面理解对于制定有效治疗和减轻疾病负担的预防策略至关重要。
摘要 - 内脏利什曼病是一种威胁生命的载体传播疾病,对儿童和老年人免疫功能低下的人的影响不成比例,是一种主要的热带忽视疾病。在利什曼尼亚·多诺瓦尼(Leishmania Donovani)尚未报道过凋亡的伴侣蛋白质,而它们的识别可能会导致有关寄生虫细胞死亡和建立替代治疗剂的知识。我们搜索了哺乳动物的Bcl-2家族蛋白直系同源物,并在多诺瓦尼乳杆菌中发现了一种抗凋亡和两个促凋亡的直系同源物。。 进行了进行分子对接和分子动力学模拟,以评估已识别的凋亡蛋白与模拟哺乳动物固有的凋亡途径之间的蛋白质蛋白相互作用。 恢复表明,两种促凋亡蛋白都与抗凋亡直系同源物的疏水袋相互作用,形成稳定的复合物。 这种相互作用可能代表L. Donovani的凋亡途径中的关键事件。 为了进一步表征它,我们使用了CRISPR-CAS9方法来靶向识别蛋白。 纯敲门的种群突变体,并暴露于凋亡刺激中。 末端脱氧核苷酸转移酶Dutp nick末端标记(TUNEL)测定和定量表达促进表明,这些蛋白质与寄生虫的凋亡有关,并可能在其生存中起作用。。进行分子对接和分子动力学模拟,以评估已识别的凋亡蛋白与模拟哺乳动物固有的凋亡途径之间的蛋白质蛋白相互作用。恢复表明,两种促凋亡蛋白都与抗凋亡直系同源物的疏水袋相互作用,形成稳定的复合物。这种相互作用可能代表L. Donovani的凋亡途径中的关键事件。为了进一步表征它,我们使用了CRISPR-CAS9方法来靶向识别蛋白。纯敲门的种群突变体,并暴露于凋亡刺激中。末端脱氧核苷酸转移酶Dutp nick末端标记(TUNEL)测定和定量表达促进表明,这些蛋白质与寄生虫的凋亡有关,并可能在其生存中起作用。
利什曼病是一种被忽视的媒介传播疾病,由通过感染的沙蝇叮咬传播的利什曼原虫引起。目前的治疗方法有限,部分原因是它们成本高昂且副作用大,而且目前还没有可用的人类疫苗。沙蝇唾液已被研究作为抗利什曼原虫疫苗的潜在应用。唾液蛋白 PpSP15 是第一个针对 L. major 的保护性疫苗候选物。此外,PsSP9 已被引入作为针对 L. tropica 的高免疫原性唾液蛋白。在此,我们旨在开发一种有效的多价活疫苗来控制由两种主要物种 L. major 和 L. tropica 引起的皮肤利什曼病。因此,使用 T2A 接头将上述两种唾液蛋白整合到 L. tarentolae 基因组内作为安全的活载体。然后,在用 CpG 预先处理的 BALB/c 小鼠中评估了共表达 PpSP15 和 PsSP9 的重组 L. tarentolae 的免疫原性和保护作用,以对抗 L. major 和 L. tropica。在感染前后的不同时间点进行细胞因子测定、寄生虫负担和抗体评估后,在接种共表达 PpSP15 和 PsSP9 的重组 L. tarentolae 的小鼠中获得了有希望的保护性 Th1 免疫力。这是首次证明基于不同唾液蛋白组合的安全活疫苗对两种不同利什曼原虫感染攻击的效力的研究。
简介 墨西哥利什曼原虫是一种可感染人类的单细胞真核生物,是引起利什曼病的物种之一。由于其毒性较低(引起皮肤利什曼病而非内脏利什曼病)并且能够在适当的无菌培养中容易分化为无鞭毛体形式,它通常被用作分子细胞生物学的模型利什曼原虫物种。我们之前曾描述过表达 Cas9 和 T7 RNA 聚合酶的转基因墨西哥利什曼原虫 MNYC/BZ/62/M379 的生成,该菌株可进行快速反向遗传修饰 1 。由于这不是参考基因组菌株(参考基因组菌株为 MHOM/GT/2001/U1103) 2 并且可能在实验室培养和/或 Cas9 或 T7 表达的选择压力下积累了突变,因此我们对这种广泛使用的菌株的基因组进行了测序,作为设计反向遗传策略的高质量参考。
随着被忽视的热带疾病利什曼病在全球范围的蔓延,再加上治疗方法有限,且这些治疗方法都存在耐药性、成本、毒性和/或给药问题,在病原昆虫媒介原生动物利什曼原虫中验证新药物靶点比以往任何时候都更加重要。在 2015 年引入 CRISPR Cas9 技术之前,新靶点的基因验证主要通过同源重组进行靶向基因敲除,其中大多数靶向基因(约 70%)被视为非必需基因。在本研究中,我们利用现成的全基因组测序技术重新分析了这些历史细胞系之一,即 L. major 敲除丝氨酸棕榈酰转移酶 (LCB2) 催化亚基,这会导致鞘脂生物合成完全丧失,但仍具有活力和感染性。结果发现了许多单核苷酸多态性,但也揭示了几个编码区的完全丢失,包括一个编码假定的 ABC3A 直系同源物(假定的固醇转运蛋白)的基因。假设这种转运蛋白的缺失可能促进了 LCB2 催化亚基的定向敲除和从头鞘脂生物合成的完全丧失,我们重新检查了 L. mexicana 品系中的 LCB2,该品系经过工程改造,可直接通过 CRISPR Cas9 定向操作。令人惊讶的是,LCB2 无法被敲除,表明其是必需的。然而,同时删除 LCB2 和假定的 ABC3A 是可能的。这表明假定的 ABC3A 的缺失促进了利什曼原虫中鞘脂生物合成的丧失,并表明我们应该重新检查许多其他基因被视为非必需的利什曼原虫敲除品系。
应对静止和治疗后复发的挑战在微生物学领域中至关重要。这项研究表明,在人和小鼠骨髓干细胞中估计有2-3个分裂后,Infantum和Donovani L. donovani寄生虫迅速静止。有趣的是,在巨噬细胞中未观察到这种行为,这是利什曼原虫寄生虫的主要宿主细胞。静止和非循环代谢状态的转录比较证实了基因表达的总体下降是静止的标志。静止的amastigotes显示出随着遗传改变而快速进化适应反应的尺寸和迹象。我们的研究进一步证明了这种静止状态会显着增强对治疗的抗药性。此外,通过静止的过渡与沙蝇的传播高度兼容,并增加了寄生虫感染细胞的潜力。总的来说,这项工作将骨髓中的干细胞确定为利什曼原虫静止的利基市场,对抗寄生虫治疗和毒力性状的获取具有重要意义。
在过去的50年中,已采用各种鼠菌株作为TL和VL的模型。这些模型已用于研究细胞类型,细胞因子,抗利什曼原虫效应器机制和药物,以及评估临床疾病分辨率,对继发感染的抗性和疫苗发育的研究。(13,14)小鼠感染的模式和严重程度取决于利什曼原虫物种和小鼠菌株。这些模型再现了人类疾病的许多方面,并具有一系列易感性,具体取决于小鼠菌株。(15)小鼠模型最常用于研究TL发病机理,这是由于细胞标记物以及近交,先天性和转基因菌株的高可用性。(16)不同基因型的小鼠固有地表现出对各种利什曼原虫菌株和物种的敏感性,如在非修订和自我修复中所观察到的
利什曼原虫(Leishmania)是一种众所周知的单细胞寄生虫,是一种使人衰弱的载体疾病的病因,其致命的内脏(VL)和粘膜皮肤(MCL)形式到自我修复皮肤表现(CL)。由于疾病的流行和全球传播的变化,迫切需要保护性疫苗和候选药物(PAZ,2024年)。然而,对真正的寄生虫托管相互作用的深刻理解中的失败阻碍了保护性疫苗或有效治疗的发展。Seyed等。已经讨论了疫苗接种失败的一些根本原因以及在小鼠模型中已经鉴定出的保护的相关性以及更好地符合这些保护标准的疫苗配方,即活着的活死或非致病利什曼原虫物种和DNA疫苗。现在可以应用新技术,例如CRISPR-CAS9(Sharma等,2021)和新一代无抗生素的质粒(Alonso等,2023),可用于解决与这些疫苗平台相关的内置缺陷。基本上,针对利什曼尼亚或其他相关巨噬细胞寄生虫的保护性疫苗,例如“伴有免疫力”的克鲁兹锥虫瘤,这意味着“持久,低级感染”(Peters and Sacks,2009年,2009年; Peters等,2009; Peters等,2014; Seeed and seeed and rafati,Rafati,20221)。Cai等。 已经证明了实验性活疫苗与在表达Cruzi抗原锥虫瘤的重组无毒的利什曼原虫(DHFR-TS-)上配制的Chagas疾病的有效性。 Almeida Machado等。Cai等。已经证明了实验性活疫苗与在表达Cruzi抗原锥虫瘤的重组无毒的利什曼原虫(DHFR-TS-)上配制的Chagas疾病的有效性。Almeida Machado等。Almeida Machado等。该研究的结果值得进一步调查活体受累的利什曼原虫作为疫苗,以满足利什曼病和chagas的“伴随免疫力”,这是两种全球重要的感染。目前,当人类疫苗落后于落后于化学疗法时,在疾病控制中仍然起着最重要的作用。然而,对当前治疗剂的耐药性上升,敦促更换新的化学物质。尽管在高吞吐药物发现中取得了显着突破,但迫切需要鉴定有前途的新型抗利什曼尼亚化合物。已经有优势的药物重新利用,涉及确定已经批准其他适应症的现有药物的新治疗用途(Kulkarni等,2023)。该小组第一次提出
为了检查利什曼原虫大调的遗传多样性,在2019 - 2021年期间,从伊朗(东北,中部和西南省东北,中部和西南省)的地方性焦点收集了100个GIEMSA染色的正幻灯片。Leishmania It-rDNA基因被占据了,Leishmania sp。通过PCR-RFLP和测序识别。此外,还从伊朗其他地理区域的178个注册的ITS-RDNA序列是从Genbank中检索出的,包括不同的寄主物种(人,沙蝇和啮齿动物)。使用ITS-RDNA序列分析发现了总共40种新的单倍型。ir29(20.6%)和IR34(61%)是两种最常见的单倍型,以整个人口中的星形特征表示。分子方差测试的分析显示L的遗传多样性低。 在人类病例(单倍型多样性; 0.341),啮齿动物(HD; 0.387)和沙蝇(HD; 0.390)序列中的专业。 L的最低遗传多样性。 在伊朗西南/东南部观察到了大调(HD:0.104–0.286)。 统计上的f st值表示l。 主要在伊朗的地理区域之间没有遗传区分,除了东北西南(F ST:0.29055)和中南部(F ST:0.30294)人口对以外。 首次调查揭示了新的观点,以进一步评估当地传输范式并启动有效的预防策略。分子方差测试的分析显示L的遗传多样性低。在人类病例(单倍型多样性; 0.341),啮齿动物(HD; 0.387)和沙蝇(HD; 0.390)序列中的专业。L的最低遗传多样性。大调(HD:0.104–0.286)。统计上的f st值表示l。主要在伊朗的地理区域之间没有遗传区分,除了东北西南(F ST:0.29055)和中南部(F ST:0.30294)人口对以外。首次调查揭示了新的观点,以进一步评估当地传输范式并启动有效的预防策略。
摘要:利什曼尼亚人是由原生动物寄生虫Leishmania spp感染引起的一组媒介传播疾病。其中一些,例如地中海内脏利什曼病,是人畜共患病疾病,该疾病是通过毒性昆虫从脊椎动物传播到脊椎动物的,是沙质的。由于在全球90多个国家中有一个流行,因此这个复杂而重大的健康问题取决于所涉及的寄生虫物种不同,内脏形式是最令人担忧的,因为未经治疗时会致命。尽管如此,目前可用的抗精神经会疗法非常有限(低效率,毒性,不良副作用,耐药性,治疗时间和成本),因此迫切需要发现具有抗精性活动的新化合物,这是理想情况下是廉价的,并且具有少量副作用和新型副作用和新型动作。因此,最近在许多有趣的抗精神病药开发计划中采用了各种强大的方法。这篇评论的目的是关注开发潜在药物的第一步,并确定目前用于筛查体外命中率化合物的探索方法和所涉及的挑战,尤其是在协调不同研究团队进行的工作结果方面。本综述还旨在确定在药物开发过程中更广泛使用的创新筛查工具和方法。