非常荣幸能在剑桥学者出版社出版我的作品。虽然部分内容已在相关期刊上发表,但将本书作为一个整体呈现给读者(尤其是没有遥感背景的读者)具有重要价值,可以展示不同学科处理和应用机载激光雷达数据的完整框架。在此,我要感谢我的博士生导师 Bob Haining 教授和 Bernard Devereux 博士,他们让我了解了机载激光雷达领域,并为我打下了坚实的研究基础。我要衷心感谢我的父母,他们毫无保留地支持我的所有重大决定。我还要向我的妻子和双胞胎儿子表示最深切的感谢,他们是我成为更好的学者和人的终生动力。
使用激光束在1960年由T. Maiman发明激光后不久就会发出大气。在整个大气中,气溶胶的观察和表征随着复杂性的日益激增而普遍,现在经常整合到网络中。2006年发射了云 - 大气圈激光雷达和红外探路者卫星观察(卡利皮),仍在绕地球绕。LIDAR气溶胶观测值现在用于空气质量的预测。多普勒激光雷达,以观察较低或更高大气中的风场。现在,它们已商业可用,并在世界各地广泛部署了风能行业,机场的监视等。LIDAR,用于测量温度,湿度,大气中气态成分的浓度,设想用于太空任务的垂直轮廓,并得益于激光和探测器技术的进展。特刊将试图概述LiDAR技术和科学的最新发展以及观察大气的工业应用。
这篇论文是由学者的矿山带给您的,这是密苏里州S&T图书馆和学习资源的服务。这项工作受美国版权法的保护。未经授权的使用,包括重新分配的复制需要版权持有人的许可。有关更多信息,请联系scholarsmine@mst.edu。
摘要 - 先前的研究证明了端到端深度学习对机器人导航的有效性,其中控制信号直接源自原始感觉数据。但是,大多数现有的端到端导航解决方案主要基于相机。在本文中,我们介绍了Tinylidarnet,这是一种基于自动赛车的基于轻量级的2D激光雷达的端到端深度学习模型。使用Tinylidarnet的第1辆汽车在第12场比赛中获得第三名,这表明了其竞争性能。我们会系统地分析其在未经训练的轨道和实时处理的计算要求上的性能。我们发现,基于Tinylidarnet的1D卷积Neu-ral网络(CNN)的体系结构显着胜过基于多层的多层感知器(MLP)体系结构。此外,我们表明它可以在低端微控制器单元(MCUS)上实时处理。
摘要:在本文中,我们提出了一种基于新型的,视觉转化器的端到端姿势估计方法,Lidpose,用于实时人类骨架估计,在非重复循环扫描(NRCS)LIDAR点云中。在vitpose架构上建造,我们介绍了新颖的改编,以解决NRCS激光雷达的独特特性,即稀疏性和异常的类似Rosetta的扫描模式。所提出的方法解决了基于NRCS激光雷达的感知的常见问题,即测量的稀疏性,它需要在记录数据的空间和时间分辨率之间保持平衡,以有效地分析各种现象。lidpose利用NRCS激光雷达传感器的前景和背景细分技术来选择感兴趣的区域(ROI),使下痛成为移动行人检测和从RAW NRCS LIDAR LIDAR LIDAR测量序列中移动的端到端方法,该方法由静态传感器捕获的静态传感器供Sureveellance Seasarions捕获。为了评估该方法,我们创建了一个新颖的,真实的,多模式的数据集,其中包含来自Livox Avia传感器的相机图像和LIDAR点云,并带有注释的2D和3D人体骨架地面真相。
扩散模型(DMS)已经实现了最新的(SOTA),从而导致LIDAR点云生成任务,从而受益于他们在抽样过程中稳定的训练和迭代精炼。但是,DMS由于其固有的降解过程而经常无法实际对LiDAR Raydrop噪声进行建模。为了保留迭代采样的强度,同时增强了射线噪声的产生,我们引入了Lidargrit,这是一种生成模型,该模型使用自动回应变压器在潜在空间而不是图像空间中迭代采样范围图像。此外,lidargrit还利用VQ-VAE分别解码范围和射线罩。我们的结果表明,与Kitti-360和Kitti Odometry数据集中的SOTA模型相比,Lidargrit的性能表现出色。代码可用:https://github.com/hamedhaghighi/lidargrit。
摘要:移动自主机器人需要准确的地图来实时导航和做出明智的决定。猛击(同时定位和映射)技术允许机器人在移动时构建地图。但是,在复杂或动态的环境中,SLAM可能具有挑战性。本研究提出了一个名为Scramble的移动自主机器人,该机器人根据两个传感器的数据融合使用SLAM:Rplidar A1M8 LIDAR和RGB摄像机。如何使用数据融合来提高映射,轨迹计划和移动自动机器人障碍物检测的准确性?在本文中,我们表明,视觉和深度数据的融合显着提高了映射,轨迹计划和移动自主机器人的障碍物检测的准确性。这项研究通过引入基于数据融合的SLAM方法来帮助自主机器人导航的发展。移动自主机器人用于各种应用程序,包括包装交付,清洁和检查。开发更健壮,更准确的SLAM算法对于在具有挑战性的环境中使用这些机器人至关重要。
摘要:随着在自动驾驶领域的同时定位和映射技术的发展,当前的同时定位和映射方案不再是单个传感器,并且正在朝着多传感器融合的方向发展,以增强ro骨和准确性和准确性。在这项研究中,提出了一种基于相机,LIDAR和IMU的多传感器融合的定位和映射方案,称为LVI融合。不同的传感器具有不同的数据采集频率。为了解决异质传感器数据紧密耦合中时间不一致的问题,时间对齐模块用于对齐激光雷达,相机和IMU之间的时间戳。图像分割算法用于分割图像的动态目标并提取静态关键点。同时,进行了基于静态关键点的光流跟踪,并提出了强大的特征点深度恢复模型,以实现对特征点深度的强大估计。最后,LIDAR约束因子,IMU前综合约束因子和视觉约束因子共同构造使用基于滑动窗口的优化模块处理的误差方程。实验结果表明,所提出的算法具有竞争力和鲁棒性。