沃尔沃汽车和芬兰高端增强现实耳机制造商 Varjo 共同创建了一种混合现实方法来评估原型、设计和主动安全技术。沃尔沃汽车技术基金决定投资 Varjo,这将进一步加强双方的合作。沃尔沃和 Varjo 已经实现了佩戴混合现实耳机驾驶真实汽车,无缝添加虚拟元素或完整功能,这些功能对驾驶员和汽车传感器来说都是真实的,用于开发目的。Varjo XR-1 耳机以高分辨率提供逼真的混合或虚拟现实。它使用高清摄像头并实现混合现实。这使设计师和工程师能够驾驶未来的汽车并在模拟环境中评估所有功能,而这些功能早在它们问世多年前就已存在。安全专家可以在沃尔沃位于瑞典的研究机构佩戴耳机驾驶真实汽车,测试通过增强现实在现实环境中实施的虚拟主动安全系统。XR-1 中嵌入的眼动追踪技术可以评估驾驶员如何使用新功能以及他们是否分心。
沃尔沃汽车和芬兰高端增强现实耳机制造商 Varjo 共同创建了一种混合现实方法来评估原型、设计和主动安全技术。沃尔沃汽车技术基金决定投资 Varjo,这将进一步加强双方的合作。沃尔沃和 Varjo 已经实现了佩戴混合现实耳机驾驶真实汽车,无缝添加虚拟元素或完整功能,这些功能对驾驶员和汽车传感器来说都是真实的,用于开发目的。Varjo XR-1 耳机以高分辨率提供逼真的混合或虚拟现实。它使用高清摄像头并实现混合现实。这使设计师和工程师能够驾驶未来的汽车并在模拟环境中评估所有功能,而这些功能早在它们问世多年前就已存在。安全专家可以在沃尔沃位于瑞典的研究机构佩戴耳机驾驶真实汽车,测试通过增强现实在现实环境中实施的虚拟主动安全系统。XR-1 中嵌入的眼动追踪技术可以评估驾驶员如何使用新功能以及他们是否分心。
沃尔沃汽车和高端增强现实耳机制造商 Varjo 共同创建了一种混合现实方法来评估原型、设计和主动安全技术。沃尔沃汽车技术基金决定投资 Varjo,将进一步加强双方的合作。沃尔沃和 Varjo 已经实现了佩戴混合现实耳机驾驶真实汽车,无缝添加虚拟元素或完整功能,让驾驶员和汽车传感器都感觉非常真实,以用于开发目的。Varjo XR-1 耳机以高分辨率提供逼真的混合现实或虚拟现实。它使用高清摄像头并实现混合现实。这使得设计师和工程师能够驾驶未来的汽车并在模拟环境中评估所有功能,而这些功能早在汽车问世多年前就已存在。安全专家可以在沃尔沃位于瑞典的研究机构中戴着耳机驾驶真正的汽车,通过增强现实技术在现实环境中测试虚拟主动安全系统。XR-1 中嵌入的眼动追踪技术可以评估驾驶员如何使用新功能以及他们是否分心。
美国宇航局兰利研究中心研制出了一种机载三脉冲积分路径差分吸收 (IPDA) 激光雷达 [1- 3]。该仪器可同时测量大气中的二氧化碳 (CO 2 ) 和水蒸气 (H 2 O)。IPDA 发射器产生波长为 2 µ m 的高能激光脉冲,重复率为 50 Hz。每次激光发射由三个 50 ns 脉冲组成,间隔 200 µ s,每个脉冲的波长设置不同 [4]。相对于 CO 2 R30 线中心,三个脉冲的工作波长选择为第一、第二和第三个脉冲分别针对 H 2 O 吸收、CO 2 吸收和最小吸收(离线)[1]。IPDA 接收器由一个 0.4 m 牛顿望远镜组成,可将返回辐射聚焦到 300 µ m 的光斑大小上。返回辐射经过准直和滤波,然后被分离(90%-10%)到高信号通道和低信号通道。高信号通道聚焦于直径 300 µ m 的商用扩展范围 InGaAs PIN 光电探测器。低信号通道用于扩展检测动态范围,以获得高回报而不会饱和。此外,低信号通道可用于测试其他 2 µ m 检测技术 [3]。
Lidar 与 radar 一样,实际上是一个首字母缩略词。radar 代表“无线电探测和测距”,lidar 代表“光探测和测距”,它描述了一种使用激光确定三维 (3D) 数据点的方法。它是一种遥感技术,使用地面(地面激光扫描;TLS)或机载(机载激光扫描;ALS)系统;它可以在静态或移动平台上使用,包括飞机和车载传感器。它也被称为机载激光测绘 (ALSM),在某些军事环境中,它被称为激光探测和测距 (LaDAR)。从最广泛的意义上讲,lidar 指的技术范围比本指南中涉及的要广泛得多;因此,本指南侧重于航空系统的应用,并通篇使用 lidar 这一术语。
图 2。左图:发射的激光脉冲(粗箭头)被导向大气、波长计和光谱仪,用于内部参考测量(LPO:低功率振荡器、PLL:锁相环、SHG:二次谐波生成、THG:三次谐波生成、RLH:参考激光头)。接收到的反向散射信号通过前置光学器件传输,然后由两个不同的光谱仪进行分析。一小部分反向散射信号被引导至 UV 相机以进行共对准(细虚线箭头)。累积电荷耦合器件 (ACCD) 检测入射光子,模拟数字转换器 (ADC) 转换信号。右图:用于 Mie 和 Rayleigh 通道的 ACCD 的简化操作原理。在成像区采集后,信号通过传输行移至存储区。从那里,电荷被推送到读出寄存器,最后推送到 ADC。信号电平按颜色编码,从黑色(无信号)和蓝色(低)到红色(高)。
1.连续操作范围 PulseTRAK™ 技术通过消除其他配备多脉冲的传感器中常见的数据覆盖间隙和不规则点密度,实现了真正的连续操作范围。此功能大大简化了任务规划,并在整个数据集中产生一致的数据分布,甚至跨越接收器“盲区”。» 实现一致的点密度,不再有接收器“盲区”。» 无论地形如何变化,完全自由收集可显著提高效率。» 大大简化了任务规划。2.动态视场 (FOV) Galaxy 采用 SwathTRAK™ 技术,是唯一一款采用实时动态 FOV 的传感器,即使在不同的地形高度下也能保持固定宽度的扫描带。» 尽管地形高度发生变化,仍能保持规则的点分布并提高点密度一致性。» 与固定 FOV 传感器相比,航线数量更少,可实现最大收集效率。» 与固定 FOV 传感器设计相比,收集成本可节省 40-70%,具体取决于地形变化。
激光雷达(光检测和测距)技术有可能彻底改变自动化系统与其环境和用户的交互方式。当今行业中的大多数激光雷达系统都依赖于脉冲(或“飞行时间”)激光雷达,而这种激光雷达在深度分辨率方面已达到极限。相干激光雷达方案,例如调频连续波 (FMCW) 激光雷达,在实现高深度分辨率方面具有显著优势,但通常过于复杂、昂贵和/或体积太大,无法在消费行业中实施。FMCW 及其近亲扫频源光学相干断层扫描 (SS-OCT) 通常针对计量应用或医疗诊断,这些系统的成本很容易超过 30,000 美元。在本论文中,我介绍了我在芯片级光学和电子元件集成方面的工作,以应用于相干激光雷达技术。首先,我将总结将通常体积庞大的 FMCW 激光雷达控制系统集成到光电芯片堆栈上的工作。芯片堆栈由一个 SOI 硅光子芯片和一个标准 CMOS 芯片组成。该芯片用于成像系统,可在 30 厘米的距离内生成深度精度低至 10 微米的 3D 图像。其次,我将总结我在实施和分析一种新的 FMCW 激光雷达信号后处理方法方面的工作,称为“多同步重采样”(MK 重采样)。这涉及非线性信号处理方案下激光相位噪声的蒙特卡罗研究,因此我将展示随机模拟和实验结果,以证明新重采样方法的优势。QS 重采样有可能提高相干成像系统的采集率、精度、信噪比和动态深度范围。
热带森林树木的特性测量仅限于实地技术,主要测量树干圆柱形部分的直径,在测量形状不规则的大树以及其他尺寸属性(例如树总高和树冠大小)时存在很大的不确定性。在这里,我们介绍了一种将激光雷达点云数据分解为与单个树冠 (ITC) 相对应的 3D 聚类的方法,该方法可以估算热带森林的许多生物物理变量,如树高、树冠面积、树冠体积和树木数量密度。使用在巴拿马巴罗科罗拉多岛 50 公顷热带森林科学中心 (CTFS) 地块上收集的机载高分辨率激光雷达数据测试了基于 ITC 的方法。由于缺乏实地树高和树冠大小测量,因此无法直接验证 ITC 指标。我们通过比较使用地面和激光雷达单株树木测量值在多个空间尺度(即 1 公顷、2.25 公顷、4 公顷和 6.25 公顷)上估算的地上生物量 (AGB) 来评估我们方法的可靠性。我们研究了四种不同的激光雷达得出的 AGB 模型,其中三种基于单株树木的高度、树冠体积和树冠面积,一种使用激光雷达树冠高度模型在样地水平上计算平均树冠高度 (TCH)。结果表明,所有基于 ITC 大小和 TCH 的模型的预测能力随着空间分辨率的降低而增加,最差的模型在 1 公顷时为 16.9%
热带森林树木的表征仅限于基于现场的技术,该技术侧重于测量树干圆柱形部分的直径,在测量形状不规则的大树以及其他尺寸属性(例如树的总高度和树冠大小)时存在很大的不确定性。在这里,我们介绍了一种将激光雷达点云数据分解为与单个树冠 (ITC) 相对应的 3D 簇的方法,该方法可以估计热带森林的许多生物物理变量,例如树高、树冠面积、树冠体积和树木数量密度。使用在巴拿马巴罗科罗拉多岛 50 公顷热带森林科学中心 (CTFS) 地块上收集的机载高分辨率激光雷达数据测试了基于 ITC 的方法。由于缺乏现场树高和树冠大小测量,因此无法直接验证 ITC 指标。我们通过比较使用地面和激光雷达单株树木测量值在多个空间尺度(即 1 公顷、2.25 公顷、4 公顷和 6.25 公顷)上估算的地上生物量 (AGB) 来评估我们方法的可靠性。我们研究了四种不同的激光雷达得出的 AGB 模型,其中三种基于单株树木高度、树冠体积和树冠面积,一种使用激光雷达冠层高度模型在地块水平计算平均树冠高度 (TCH)。结果表明,所有基于 ITC 大小和 TCH 的模型的预测能力都随着空间分辨率的降低而增加,从最差模型在 1 公顷时的 16.9% 到最佳模型在 6.25 公顷时的 5.0%。除了在更高的空间尺度(~4 公顷)下以及由于与树冠相关的边缘效应而导致的误差减少外,基于 TCH 的模型表现略好于基于 ITC 的模型。与根据森林类型和结构异速生长而区域性变化的 TCH 模型不同,基于 ITC 的模型是根据单个树木异速生长而得出的,可以扩展到全球所有热带森林。激光雷达检测单个树冠大小的方法克服了地面清查的一些局限性,例如 1) 它能够接触大树的树冠;2) 它能够评估大片和人迹罕至地区的树木密度、树冠结构和森林动态的方向变化,从而支持稳健的热带生态研究。© 2016 Elsevier Inc. 保留所有权利。