摘要阿尔茨海默氏病(AD)影响了全球超过5500万人,但关键的遗传贡献者仍然没有尚未确定。利用基因组元素模型的最新进展,我们提出了创新的反向基因发现技术,这是一种神经网络结构中一种突破性的神经元到基因的回溯方法,以阐明新型的因果关系遗传生物标志物推动了AD套装。逆向基因 - 包括三个关键创新。首先,我们利用这样的观察结果,即引起AD的概率最高的基因(定义为最有因果基因(MCG))必须具有激活那些引起AD的最高可能性的神经元的最高可能性,该神经元被引起AD的可能性最高,被罚款为最大的神经元(MCNS)。其次,我们在输入层处取代基因令牌表示,以允许每个基因(已知或新颖的AD)表示为输入空间中的疾病和独特的实体。最后,与现有的神经网络体系结构相反,该架构以馈送方式跟踪从输入层到输出层的神经激活,我们开发了一种创新的回溯方法,可以跟踪从MCNS到输入层的向后进行识别,从而识别最引起的代币(MCTS)和Corre-McGs。逆向基因 - 高度解释性,可推广和适应性,为在其他疾病情景中应用提供了有希望的方法。
摘要 - 在危险环境中,自主机器人系统的使用日益增加强调了有效搜索和救援操作的需求。尽管取得了重大进步,但现有有关对象搜索的文献通常在漫长规划范围和处理传感器限制(例如噪声)的困难方面往往不足。这项研究介绍了一种新颖的方法,该方法将搜索问题提出为马尔可夫决策过程(BMDP-O),以使蒙特卡洛树搜索(MCTS)成为在大规模环境中克服这些挑战的可行工具。所提出的公式结合了动作序列(选项)以在感兴趣区域之间移动,从而使算法能够有效地扩展到大环境。此方法还可以使用可自定义的视野,用于多种类型的传感器。实验结果证明了与没有选项的问题和替代工具(例如退化的地平线计划者)相比,在大环境中这种方法的优势。给定的拟议公式的计算时间相对较高,提出了进一步的近似“ Lite”公式。Lite公式以更快的计算速度以相当数量的步骤找到对象。索引术语 - 对象搜索,不在dectainty下的决策,POMDP
摘要 本综述旨在全面概述使用初榨椰子油 (VCO) 作为疏水性脂肪成分的乳剂。它重点介绍 VCO 中的主要甘油三酯,这些甘油三酯可转化为具有多种药理特性的生物活性中链甘油三酯 (MCT)。VCO 的重要性在于帮助抵抗病毒和微生物感染、利用其多酚含量作为强效抗氧化剂以及支持减肥和与肥胖相关的代谢改善。VCO 源自椰子,是一种重要的植物油,主要产于菲律宾、马来西亚和印度尼西亚;这些地区盛产椰子。尽管 VCO 具有广泛的益处,但反饱和脂肪偏见限制了它在医学文献中的曝光和认可。本综述填补了这一空白,强调了基于 VCO 的乳剂应用以及对全球消费者和行业的优势。通过研究 VCO 的特性及其对药物的重大贡献,该研究旨在增强对基于 VCO 的乳剂的理解和认识。研究结果强调,需要更广泛地认识 VCO 的潜力,特别是在对抗感染、作为抗氧化剂以及促进与体重管理和代谢健康相关的健康益处方面。本综述为未来在制药和健康相关背景下利用 VCO 的研究和开发提供了基础参考。关键词:初榨椰子油、病毒、抗氧化剂、多酚、代谢
在本文中,我们考虑了5G网络切片的虚拟网络嵌入(VNE)问题。此问题需要在基板虚拟化物理网络上分配多个虚拟网络(VN),同时最大化资源,最大数量,放置的VN和网络运营商的好处。我们解决了随着时间的推移而到达的问题的在线版本。受到嵌套推出策略适应(NRPA)算法的启发,这是众所周知的蒙特卡洛树搜索(MCT)的变体,该变体学习了如何随着时间的推移进行良好的模拟,我们提出了一种新算法,我们称之为邻里增强策略适应(NEPA)。我们算法的关键特征是观察NRPA无法利用状态树一个分支中获得的知识,而这是另一个启动的知识。NEPA通过以节俭的方式将NRPA与邻居搜索相结合来学习,这仅改善了有希望的解决方案,同时保持运行时间较低。我们将这项技术称为猴子业务,因为它归结为从一个有趣的分支跳到另一个分支,类似于猴子如何跳到树上,而不是每次都倒下。与其他最先进的算法相比,NEPA在接受率和收入比率的比率方面取得了更好的结果,无论是在真实和合成拓扑上。
深度加固学习(DRL)的最新进步显着提高了适应性交通信号控制(TSC)的性能。但是,DRL策略通常由神经网络表示,这些神经网络是过度参数化的黑框模型。因此,学识渊博的政策通常缺乏解释性,由于资源构成而无法直接部署在现实世界中的硬件中。此外,DRL方法经常表现出限制性的概括性能,努力将学习的政策推广到其他地理区域。这些因素限制了基于学习的方法的实际应用。为了解决这些问题,我们建议使用一个可以继承的可解释程序来表示控制策略。我们提出了一种新的方法,即用于交通信号控制(π-light)的可策划增强学习,旨在自主发现非差异性的程序。具体来说,我们为构建程序定义了特定域的语言(DSL)和转换规则,并利用蒙特卡洛树搜索(MCT)在离散空间中找到最佳程序。广泛的实验表明,我们的方法始终超过基本线方法。此外,与DRL相比,π灯具有优越的通用能力,从而使跨不同城市的交叉点培训和评估。最后,我们分析了学到的计划政策如何直接在资源极有限的边缘设备上删除。
虽然大型语言模型在一系列复杂的任务(例如文本生成,问答,摘要)上表现良好,但强大的多步计划和推理仍然对他们来说是一个巨大的挑战。在本文中,我们表明,基于搜索的计划可以显着提高LLM在多个棋盘游戏中的表现力量(国际棋盘,Fischer Random / Chess960,Connect Four和Hex)。我们介绍,比较和对比两种主要方法:在外部搜索中,该模型指导蒙特卡洛树搜索(MCTS)的推出和评估,而无需呼叫外部引擎,并且在内部搜索中,该模型直接生成了潜在的潜在期货的线性化树,并产生了最终选择。两者都建立在相关领域知识上预先训练的语言模型上,从而捕获这些游戏中的过渡和价值功能。我们发现,我们的预训练方法可以最大程度地减少幻觉,因为我们的模型在国家预测和法律行动方面非常准确。此外,内部和外部搜索确实改善了针对最先进的机器人的胜利率,甚至在国际象棋中达到了大师级的表现,同时按类似的举动计数搜索预算与人类大师的搜索预算相似。我们将搜索与域知识相结合的方式并非特定于棋盘游戏,这表明将直接扩展为更通用的语言模型推论和培训技术。
LLM自我训练中的最新方法主要依赖于LLM生成重音,并以正确的输出答案作为培训数据过滤那些。这种方法通常会产生低质量的微调训练集(例如,计划不正确或中间推理)。在本文中,我们开发了一种加强的自我训练方法,称为REST-MCTS ∗,基于将过程奖励指导与树搜索MCTS ∗集成在一起,用于收集高质量的推理痕迹以及每步价值以培训政策和奖励模型。REST-MCT ∗避免了通常用于通过基于树搜索的强化学习来训练过程奖励的每个步骤手动注释:给定的最终正确答案,REST-MCTS ∗能够通过估算此步骤的概率来推断正确的过程奖励,可以帮助您带来正确的答案。这些推断的奖励提供了双重目的:它们是进一步完善过程奖励模型的价值目标,并促进选择高质量的痕迹进行政策模型自我训练。我们首先表明,与先前的LLM推理基线相比,REST-MCTS ∗中的树搜索策略(如在相同的搜索预算中)具有更高的精度。然后,我们证明,通过使用该搜索策略作为培训数据所搜索的痕迹,我们可以不断增强多种迭代的三种语言模型,并超过其他自我训练算法(例如REST EM和自我奖励LM)。我们在https://github.com/thudm/rest-mcts上发布所有代码。
大语言模型(LLM)在需要复杂推理的自然语言任务中表现出了显着的功能,但是它们在交互式环境中的代理,多步骤推理中的应用仍然是一个艰难的挑战。静态数据集上的传统监督预训练在实现在Web Navigation(例如Web Navigation)中执行复杂决策所需的自主代理能力时跌落。先前试图通过对精选的专家演示进行微调的微调来弥合这一差距 - 通常会遭受更复杂的错误和有限的勘探数据,从而导致了次优政策的结果。为了克服这些挑战,我们提出了一个框架,将带有指导的蒙特卡洛树搜索(MCTS)搜索与自我批评机制和使用直接优先优化(DPO)算法的非政策变体对代理相互作用进行迭代微调。我们的方法使LLM代理可以从成功和失败的轨迹中有效学习,从而改善其在复杂的多步推理任务中的概括。我们在网络商店环境(一个模拟的电子商务平台)中验证了我们的方法,在该平台上,它始终超过行为的克隆和加强基线,并在配备了进行在线搜索的能力时击败平均人类绩效。在实际预订方案中,我们的方法论将Llama-3 70B型号的零拍摄性能从18.6%升至81.7%的成功率(相对增长340%),经过一天的数据收集,并在线搜索中进一步增加到95.4%。我们认为,这代表了自主代理人能力的实质性飞跃,为在现实世界中更复杂和可靠的决策铺平了道路。