对称能量及其密度依赖性是许多核物理和天体物理学应用的关键输入,因为它们确定了从核的中子皮肤厚度到外壳厚度到中子星的半径。最近,Prex-II报告的值为0。283±0。071 FM的中子皮肤厚度为208 pb,这意味着斜率参数106±37 MEV,比从显微镜计算和其他核实验获得的大多数范围大。我们使用基于高斯过程的状态表示的非参数方程来限制对称能量S 0,L和R 208 Pb皮肤直接从具有最小建模假设的中子星的观察结果中观察到。产生的天体物理约束来自重脉冲质量,Ligo/处女座,而较好的人显然偏爱中子皮肤和L的较小值,以及负对称性不压缩性。将天体物理数据与prex-II和手性效能的结构理论约束结合得出S 0 = 33。0 +2。0-1。8 MeV,L = 53 +14-15 MeV,R 208 Pb Skin = 0。17 +0。04-0。04 FM。
图2 :(顶)8 He + P→P + 4 He + 4n反应的示意图。 (培养基)使用此反应的RIBF实验设备。左侧的8 HE梁被入射,并与氢靶标反应,并使用由电磁体和一组探测器组成的武士光谱仪分析了生成的4和质子P。 (底部)获得的4个中子系统的能量光谱。水平轴E 4n是4-中子系统的能量,减去4-中子的质量总和。观察到峰(红线)显示了MEV的四脉,宽度γ= 1.75±0.22(统计)±0.30(标准)MEV。
o(mm)跟踪分辨率,具有子-MEV阈值的能量沉积阈值非常适合GEV中微子物理计划!
摘要 — 高能电子与物质相互作用产生的辐射簇射包括能量分布峰值为 MeV 级的中子,这些中子是通过光核反应产生的,可以测量电子设备中中子诱导的单粒子效应 (SEE)。在这项工作中,我们研究了一种装置,其中欧洲核子研究中心 [Centre Européen pour la Recherche Nucléaire (CERN)] 的 CLEAR 加速器的 200 MeV 电子束被引导到铝靶上以产生具有大中子分量的辐射场。通过测量特性良好的静态随机存取存储器 (SRAM) 中的单粒子翻转 (SEU) 和闩锁率以及被动式无线电光致发光 (RPL) 剂量计中的总电离剂量 (TID),并将结果与 FLUKA 模拟的预测进行比较,对由此产生的环境进行了分析。我们发现,用铅制成的横向屏蔽可保护 SRAM 免受过高的 TID 率影响,从而为 SEU 测量提供最佳配置,尤其是在对 MeV 级中子高度敏感的 SRAM 中。相对于基于散裂靶或放射源的标准中子设施,此设置提供了一种有趣的补充中子源。
摘要:二维(2D)材料中的本地带隙调整对于电子和光电设备而言至关重要,但是在纳米级实现可控制和可重复的应变工程技术仍然是一个挑战。在这里,我们通过扫描探针报告了热机械纳米引导,以在2D过渡金属二核苷剂和石墨烯中创建应变纳米图案,从而在空间分辨率下以调制的带隙启用任意模式,以降低到20 nm。2D材料通过范德华的相互作用与下面的薄聚合物层相互作用,由于加热探针的热和压痕力而变形。特别是,我们证明了钼二硫化(MOS 2)的局部带隙被空间调节高达10%,并且可以约180 MeV的幅度调整为180 MEV,以菌株的线性速率约为-70 meV。该技术提供了一种多功能工具,用于研究具有纳米尺度分辨率的2D材料的局部应变工程。关键字:2D材料,应变纳米图案,钼二硫化,局部带隙,热扫描探针光刻,尖端增强的拉曼光谱■简介
1. 引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 5.1. 一般考虑. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
1. 引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 5.1. 一般考虑. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
反应中,必须在中子失活而无法激活原子核或离开反应堆之前将其用于裂变。能够维持链式反应的反应堆被称为具有临界质量。裂变过程中瞬发中子发射的能量约为 2 MeV。238 U 和 235 U 的裂变对中子能量的依赖性表明,235 U 对热中子(20 meV)的截面比 238 U 在 2 MeV 时的截面大三个数量级(238 U 裂变的阈值中子能量为 1.8 MeV)。因此,显然最好的选择是减慢中子的速度。尽管 235 U 约占总 U 同位素混合物的 5%。为了获得临界质量,有必要尽可能快地将它们减速到热能,此时裂变的截面大得多,而其他材料的活化截面较小。热化是通过与较小且不可活化的原子核(如氢或氘(在水中)或碳(石墨))的弹性碰撞完成的。快中子也可用于链式反应堆,但它们在将轻原子核嬗变为放射性原子核以及从重原子核产生可裂变材料方面更具反应性,例如通过中子俘获和随后的两次β衰变将铀 238 转化为钚 239。而快中子反应堆更为复杂。因此,几乎所有现有的商用核电站都使用热中子运行。在这里,有必要与聚变进行快速比较,在聚变中,氘核和氚核聚变形成氦原子和自由中子。释放的能量为 17.6 MeV,大部分是 14.2 兆瓦的超快中子。每输出 1 千瓦热量,就会产生更多、能量更高的中子,这将导致反应堆结构更大规模的激活。辐射对核电站结构的损害是一些裂变电站的寿命可以延长至一个世纪的原因,同时可以预见到更快的周转速度。然后,需要考虑转换成电能的效率。作为比较,第三代反应堆的转换效率约为 30%,而第四代高温反应堆使用联合循环可以达到 60%。在核聚变中,产生的电能中很大一部分必须用于简单地操作磁铁;即使热量可以以 60% 的效率转化为电能,总效率预计也只有 10-30%。由于这些原因,即使产生的能量超过了维持磁铁运转所需能量,聚变发电厂也需要几十年的时间才能实现经济可行性。