目的:我们研究了miRNA在母体肥胖症中的潜在参与心血管疾病CVD的发展。方法:在赫尔辛基出生队列(具有已知母体体重指数)的个体中测量血清miRNA,并使用小鼠模型来确定孕妇在怀孕期间孕产妇肥胖的致病作用,而再灌注 - 再生灌注对Offspring Cardiac miRNA的表达和释放。结果:MiR-15b-5p水平在BMI较高的母亲和肥胖大坝出生的成年小鼠心脏的雄性血清中升高。在灌注小鼠心脏的前体内模型中,我们证明了心脏组织释放miR-15b-5p,并且一些释放的miR-15b-5p包含在小细胞外囊泡(EV)中。我们还证明,缺血/再灌注后暴露于孕产妇肥胖的心脏释放更高。miR-15b-5p在体外的过表达导致线粒体膜的稳定性丧失,并抑制心肌细胞中脂肪酸氧化。结论:这些发现表明,暴露于子宫内代谢环境后心脏代谢的失调中,miR-15-b可以发挥机械作用,并且在缺血性损害后其在心脏电动汽车中释放可能是导致编织心脏和外围性心脏之间的中间通信的新因素。2024由Elsevier GmbH出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
摘要:基于miRNA的疗法代表了一种适用于各种医学领域的创新且有希望的策略,例如组织再生和许多疾病的治疗,包括癌症,心血管疾病和病毒感染。miRNA是一组小的非编码RNA,在调节转录后水平的基因表达中起着关键作用,并调节维持细胞和组织稳态的几种信号通路。《评论中讨论的临床试验先驱了一个新的miRNA治疗时代,尤其是在组织工程中,使用合成的外源模拟物miRNA和反义miRNA(抗MIRNA)来恢复组织健康。本综述概述了miRNA的生物发生,作用机理,调节和潜在应用,然后检查与治疗性miRNA的运输和交付相关的挑战。使用病毒和非病毒载体防止降解并确保有效的miRNA递送的可能性突出显示,重点是新兴使用3D生物材料脚手架的优势来递送模拟物miRNA和抗MIRNA,以促进组织修复和重新生产。最后,审查评估了miRNA激活的支架疗法的当前景观,这些疗法在骨,软骨和皮肤组织中的临床前和临床研究上,强调了它们作为个性化医学中有前途的前沿的出现。
杰斐逊数字共享将这篇文章带给您免费和开放访问。Jefferson Digital Commons是Thomas Jefferson大学教学中心(CTL)的服务。Commons是杰斐逊书籍和期刊的展示,经过同行评审的学术出版物,大学档案馆的独特历史收藏以及教学工具。Jefferson Digital Commons允许研究人员和感兴趣的读者在世界任何地方学习并与Jefferson奖学金保持最新状态。本文已被杰斐逊数字共享的授权管理员接受,以纳入药理学和实验治疗学院的教师论文。有关更多信息,请联系:jeffersondigitalcommons@jefferson.edu。
抽象的背景和目的:隆胺胺是己糖酶II抑制剂,作为抗癌分子,在临床试验中广泛探索。有限的信息占据了有关稳定性指示方法的占上风,这些方法可以确定在压力条件下强制降解隆替胺的降解。因此,我们报告了快速,敏感,可重复且高度准确的液相色谱和质谱法来分析孤立胺降解的使用。实验方法:使用同位物50:50水:具有0.1%甲酸的乙腈可以检测到lonidamine,可以在260 nm wavel的紫外(UV)检测器中,使用lonidamine检测Xbridge beh屏蔽层反向相C18列(2.5 µm,4.6×75 mm)。发现/结果:对于基于串联的液态色谱 - 质谱法(LC-MS)-UV检测,获得了R²> 0.99的线性曲线。这项研究证明(目前是由等司法洗脱的),基于LC-MS的检测具有相对较高的灵敏度(S/N(10 ng/ml):220和S/N(20 ng/ml):20 ng/ml):分别在较低的检测和定量水平下的精度。除了开发LC-MS方法外,我们还报告说,当前方法是稳定性的,并表明在所有三个应力条件下,隆丹明随着时间的流逝会降解;酸性,碱性和氧化。结论和含义:与高性能液相色谱(HPLC)-UV检测结果相比,基于LC-MS的lonidamine的定量被证明是一种更好的方法。关键字:强制退化; LC-MS;隆田胺;稳定性表示。这是关于使用LC-MS方法研究lonidamine强迫降解的稳定性指示方法的第一份报告。
摘要 肝细胞癌 (HCC) 是癌症导致死亡的第二大原因。肝移植、肝切除术、化疗和放疗是治疗 HCC 的主要方法。然而,这些方法无法限制 HCC 细胞的生长、存活和转移。多种信号通路控制着 HCC 的传播、转移和复发。最近的研究已经建立了使用 miRNA 技术预防和治疗 HCC 的新方法。microRNA 是一类平均有 22 个核苷酸的非编码 RNA,在控制各种生物过程中的基因表达方面发挥着关键作用。miRNA 可以诱导或抑制 HCC 增殖、迁移、转移和肿瘤发生。分子药物的抗癌作用可以直接在动物模型中评估,也可以通过注射用抗癌药物治疗的 HCC 细胞系间接评估。用 miRNA 靶向癌症特异性信号通路可以成为治疗 HCC 的新策略。这项研究提供了在体外和体内模型中使用 miRNA 控制肝细胞癌的最新发现。关键词:癌症、肝细胞癌、miRNA、信号通路引用本文为:Farzaneh Z、Farzaneh M。使用 miRNA 预防和治疗肝细胞癌。Arch Iran Med。2022;25(2):133-138。doi:10.34172/aim.2022.23
摘要:肥胖的发展与脂肪组织(AT)结构的大量调节有关。AT的可塑性在整个成人寿命中的显着扩展或减小大小的能力反映出,这与其脉管系统的发展有关。脉管系统的这种增加可能是通过脂肪组织衍生的干细胞(ASC)分化为内皮细胞(EC)并形成新的微脉管系统来介导的。我们已经表明,microRNA(miRNA)-145调节ASC分化为EC样细胞(ECL)细胞。在这里,我们调查了ASCS分化为ECS是否受miRNA签名的控制,该miRNA签名取决于肥胖库所产生的脂肪仓库位置和 /或代谢条件。人类ASC是通过瘦肉和肥胖患者的手术手术从白色获得的,被诱使分化为ECL细胞。我们已经确定,皮下ASC和内脏ASC和miRNA-424-5p和MiRNA-424-5p和miRNA-378A-3P中的miRNA-29b-3p在皮下(S)ASC中均参与分化为EC样细胞。这些miRNA通过靶向FGFR1,NRP2,MAPK1和TGF-β2和MAPK信号通路来调节其对ASC的促血管生成作用。我们首次表明miRNA-29b-3p上调通过直接靶向SASC和内脏ASC的TGFB2来促进ASC的分化为ECL细胞。此外,我们的结果表明,与SASC的起源(肥胖/精益)无关,miRNA-378A-3P的上调以及MiRNA-424-5p的下调分别抑制MAPK1和过表达FGFR1和NRP2。总而言之,脂肪仓库的位置和肥胖都通过特定miRNA的表达影响了居民ASC的分化。
越来越多的证据表明,表观遗传学在调节所有类型主动脉瘤的发病机制中也起着关键作用。众所周知,表观遗传因素会调节基因表达。这种机制似乎很有趣,尤其是了解遗传易感性和遗传因素与主动脉瘤和散发性动脉瘤复杂病理生理学的关系;事实上,后者是遗传因素和可改变的生活方式因素(即营养、吸烟、感染、吸毒、饮酒、久坐的生活方式等)密切相互作用的结果。表观遗传因素包括 DNA 甲基化、翻译后组蛋白修饰和非编码 RNA。在这里,我们的注意力集中在 miRNA 在综合征型和散发型胸主动脉瘤中的作用。它们既可以作为生物标志物,也可以作为新治疗策略的靶点。
1加拿大多伦多大学多伦多大学梅蒂医学院重症监护医学部门 1多伦多,多伦多,加拿大安大略省,加拿大,圣迈克尔医院5号,统一健康医院,多伦多,多伦多,多伦多,加拿大,加拿大,加拿大,加拿大,纳哈里亚州加利利医学中心6个重症监护室,纳哈里亚纳哈里亚,教学学院7学院,是多伦多,多伦多大学医学院,多伦多大学医学院,多伦多大学,多伦多,科学院。多伦多,多伦多,安大略省,加拿大1多伦多,多伦多,加拿大安大略省,加拿大,圣迈克尔医院5号,统一健康医院,多伦多,多伦多,多伦多,加拿大,加拿大,加拿大,加拿大,纳哈里亚州加利利医学中心6个重症监护室,纳哈里亚纳哈里亚,教学学院7学院,是多伦多,多伦多大学医学院,多伦多大学医学院,多伦多大学,多伦多,科学院。多伦多,多伦多,安大略省,加拿大
[图 1] 中心法则概述 该图显示了中心法则,其中遗传信息从 DNA 到 RNA,然后从 RNA 到蛋白质单向传递。 DNA以碱基序列的形式存储遗传信息,mRNA(信使RNA)通过转录合成。 mRNA 由核糖体翻译,
基因打靶 (GT) 能够使用供体 DNA 作为模板进行精确的基因组修饰(例如,引入碱基替换)。结合用于选择 GT 细胞的选择标记的干净切除,GT 有望成为一种标准的、普遍适用的碱基编辑系统。之前,我们展示了通过 piggyBac 转座子从水稻中 GT 修饰的位点进行标记切除。然而,piggyBac 介导的标记切除的局限性在于它只能识别 TTAA 序列。最近,我们提出了一种新颖的通用精确基因组编辑系统,该系统由 GT 和随后的单链退火 (SSA) 介导的标记切除组成,原则上不受靶序列的限制。在本研究中,我们将碱基替换引入了 OsCly1 基因的 microRNA miR172 靶位点,OsCly1 基因是参与闭花授粉开花的大麦 Cleistogamy1 基因的直系同源物。为确保有效的 SSA,GT 载体在选择标记的两端都含有 1.2 kb 的重叠序列。使用带有重叠序列的载体进行正负选择介导的 GT 的频率与使用不带重叠序列的 piggyBac 介导的标记切除载体的频率相当,在 T 0 代中,SSA 介导的标记切除频率计算为 ∼ 40%。这个频率被认为足以产生无标记细胞,尽管它低于使用 piggyBac 介导的标记切除的频率(接近 100%)。到目前为止,使用碱基编辑器和基于 CRISPR/Cas9 的 prime 编辑系统在目标基因的不连续多个碱基中引入精确替换已经相当困难。在这里,利用 GT 和我们的 SSA 介导的标记切除系统,我们成功地在 OsCly1 基因的 miR172 靶位点上不仅实现了单个碱基的精确替换,而且还实现了人工不连续的多个碱基的精确替换。