摘要 - 安全人类机器人相互作用(HRI)的策略,例如已建立的安全运动单元,为生物力学上安全的机器人运动提供了速度缩放。此外,值得信赖的HRI需要基于心理的安全方法。此类方案可以非常保守,并且在机器人运动计划中应效率地符合此类安全方法。在这项研究中,我们通过模型预测控制机器人运动计划器提高了先前引入的基于心理安全性的安全性方法的效率,该方法同时调整了笛卡尔路径和速度,以最大程度地减少到目标姿势的距离。下属实时运动发生器通过整合安全运动单元来确保人体安全。我们的运动计划者通过两个实验验证。同时调整路径和速度可以实现高度时间的机器人运动,同时考虑了人类的身体和心理安全。与直接路径速度缩放方法相比,我们的计划者可以实现28%的运动执行。
摘要 - 自治车辆是解决大多数运输问题的解决方案,例如安全性,舒适性和效率。转向控制是实现自动驾驶的主要重要任务之一。模型预测控制(MPC)是该任务的效果控制器之一,因为其最佳性能和处理约束的能力。本文提出了用于路径跟踪任务的自适应MPC控制器(AMPC),并提出了一种改进的PSO算法,以优化AMPC参数。使用查找表方法在线实现参数改编。通过模拟评估了提出的AMPC性能,并将其与经典的MPC和Pure Pursuit控制器进行了比较。索引项 - 自主车,优化,模型预控制,自适应控制,粒子群优化。
温室气候控制对于以经济和可持续的方式为不断增长的人群提供足够的新鲜食品很重要。然而,开发的农作物气候模型通常具有参数不确定性的复杂性,而远非准确地描述实际系统,这会影响控制系统的性能。为了提高控制过程中的最佳性并确保鲁棒性,我们为考虑参数不确定性的温室生产系统开发并实施了随机模型预测控制(MPC)方案。通过利用模型线性化的优势,与直接使用非线性模型相比,提出的机会受限的MPC方法可以更直接地制定不确定性约束和计算廉价优化。最后,在温室气候控制案例研究中证明了拟议方法的功效。
摘要 —本文介绍了一种基于分散 Voronoi 的线性模型预测控制 (MPC) 技术,用于在有界区域内部署和重构由无人机 (UAV) 组成的多智能体系统。在每个时刻,该区域被划分为与每个 UAV 智能体相关联的不重叠的时变 Voronoi 单元。编队部署目标是根据每个 Voronoi 单元的切比雪夫中心将智能体驱动到静态配置中。所提出的基于 MPC 的编队重构算法不仅允许故障/不合作的智能体离开编队,还允许恢复/健康的智能体加入当前编队,同时避免碰撞。仿真结果验证了所提出的控制算法的有效性。
复杂非线性系统(例如自动驾驶汽车)的控制通常需要可能无法使用或不准确的模型。在本文中,基于数据驱动的方法,用于学习非线性系统的数据驱动方法,以学习学习takagi – Sugeno(TS)模型,提出了一种新型的数据驱动模型预测控制(MPC)框架。为了解决数据TS建模,我们使用了不断发展的TS模糊椭圆形信息颗粒(TS-EEEFIG)方法来获得多型表示形式以及一组成员函数,这些功能允许使用有效的线性控制工具来处理复杂的非线性系统。,采用公式的方法用于赛车的自主驾驶控制问题。拟议的控件使用外部轨迹规划师提供的参考文献,在赛车模式下提供高驾驶性能。基于1/10比例RC汽车的高保真车辆模型,在模拟的赛车环境中验证了控制估计方案,以显示拟议方法的潜力。
本简介介绍了非线性模型预测控制(NMPC)策略的设计,以增量输入到状态稳定(ISS)系统。特别是设计了一种新颖的公式,这不必繁重的终端成分计算,而是依赖于最低预测范围的明确定义,以确保闭环稳定性。设计的方法特别适合通过复发性神经网络(RNN)学习的系统,该系统以增强的建模功能而闻名,并且可以通过简单的代数条件来研究增量ISS的属性。该方法应用于封闭式复发单元(GRU)网络,还提供了设计具有收敛保证的量身定制状态观察者的方法。在基准系统上测试了最终的控制体系结构,以证明其良好的控制性能和有效的适用性。©2023 Elsevier Ltd.保留所有权利。
在本文中,我们着重于在不确定的动态环境中缩小 - 摩尼斯模型预测控制(MPC)的问题。我们考虑控制一个确定性的自主系统,该系统在其任务过程中与无法控制的随机代理相互作用。采用保形预测中的工具,现有作品为未知代理的传统提供了高信心的预测区域,并将这些区域集成到MPC适当安全约束的设计中。尽管保证了闭环轨迹的概率安全性,但这些约束并不能确保在整个任务的整个过程中相应的MPC方案的可行性。We propose a shrinking-horizon MPC that guarantees recursive feasibility via a gradual relaxation of the safety constraints as new prediction regions become available online.这种放松可以从所有可用的预测区域集合最少限制性预测区域保存安全限制。在与艺术状态的比较案例研究中,我们从经验上表明,我们的方法导致更严格的预测区域并验证MPC方案的递归可行性。关键字:MPC,动态环境,共形预测
摘要 - 本文提出了一种在线两足动物的脚步计划策略,该策略结合了模型预测性控制(MPC)和增强学习(RL),以实现敏捷且健壮的两足动物。基于MPC的脚部放置控制器已经证明了它们在实现动态运动方面的有效性,但它们的性能通常受到使用简化模型和假设的限制。为了应对这一挑战,我们开发了一个新颖的脚放置控制器,该控制器利用了一项学识渊博的政策来弥合使用简化模型和更复杂的全阶机器人系统之间的差距。具体来说,我们的方法采用了基于ALIP的MPC脚部放置控制器的独特组合,用于次级脚步计划,并提供了精炼脚步调整的学习政策,从而使所得的脚步策略有效地捕获了机器人的全身动态。这种集成协同MPC的预测能力,其灵活性和适应性能力。我们通过使用全身人形机器人Draco3。结果表明,动态运动性能的显着改善,包括更好地跟踪各种步行速度,使可靠的转弯和穿越具有挑战性的地形,同时与基线ALIP ALIP ALIP MPC接近相比,保持步行步态的稳健性和稳定性。
本文为自动驾驶汽车的避免碰撞挑战提供了一种创新的优化解决方案。提出的方法包括一个在线运动计划者,旨在定义可行有效的途径,能够处理动态环境,同时隐含地确保拟议的演习中的安全性。考虑在运动计划者内部移动障碍的事实增加了问题的复杂性,而迫使它像其他人一样频繁地执行。为了降低这种计算复杂性,该方法以两个阶段的翻译进行了计数,将常用的非线性优化结构的两个阶段翻译成QP公式,可以很容易地解决。第一阶段是基于在车辆的动态约束中使用LPV矩阵。第二阶段包括基于设定的传播进行可及性分析,以获取可保证安全条件的允许输入和可触及状态的线性表达式。
基于抽象动力学系统(DS)的运动计划提供无碰撞运动,并具有闭环反应性,这要归功于它们的表达。它可以通过通过矩阵调制来重塑名义DS来确保障碍物不会渗透,该矩阵调制是使用连续可区分的障碍物表示构建的。然而,最新的方法可能会受到非凸障碍诱导的局部最小值,因此未能扩展到复杂的高维关节空间。另一方面,基于抽样的模型预测控制(MPC)技术在关节空间中提供了可行的无碰撞路径,但由于计算复杂性随着空间维度和地平线长度而生长,因此仅限于准反应性场景。为了通过移动的障碍物来控制杂乱的环境中的机器人,并在机器人的关节空间中产生可行且高度反应的无碰撞运动,我们提出了一种使用基于采样的MPC调节关节空间DS的方法。特别是,代表目标不受限制的关节空间运动的名义DS在局部扭曲了障碍物区分速度成分,该速度组件在障碍物周围导航机器人并避免局部微型摩擦。这种切向速度成分是由基于采样的MPC异步产生的无碰撞路径构成的。值得注意的是,不需要MPC不断运行,而只需要在检测到局部最小值时被激活。该方法在7-DOF机器人上的模拟和现实世界实验中得到了验证,该机器人证明了避免凹障碍的能力,同时在准静态和高度动态的混乱环境中保持局部吸引力的稳定性。