摘要:近年来,Moiré材料的出现是观察许多新型相关和拓扑现象的有吸引力的平台。moiré异质结构会产生。这种轻微的晶格不匹配产生了长波长moiré模式,该模式调节电子结构并导致新颖的物理学。Moiré超晶格会导致超晶格带,电子 - 电子相互作用和非平凡拓扑结构导致了超导性观察,量子异常的霍尔效应和轨道磁化强度以及其他有趣的特性。本综述着重于Moiré材料中轨道磁性的体验观察和理论分析。这些系统具有新颖的能力,其能力受到Bloch电子的轨道磁矩主导的磁性。使用外部电场和载体浓度很容易调节这种轨道磁矩,因为它起源于量子异常效应。因此,在Moiré超晶格中发现的轨道磁性对于包括Spintronics,超低功率磁性记忆,基于自旋的神经形态计算和量子信息技术在内的广泛应用中可能具有很高的吸引力。
在二维反铁磁半导体 CrPS 4 上实现的晶体管表现出大的磁导,这是由于磁场引起的磁状态变化。电导和磁状态耦合的微观机制尚不清楚。我们通过分析决定晶体管行为的参数——载流子迁移率和阈值电压——随温度和磁场的变化来确定它。对于接近尼尔温度 TN 的温度 T ,磁导源于由于施加的磁场导致的迁移率增加,从而降低了自旋涨落引起的无序。当 T << TN 时,变化的是阈值电压,因此在固定栅极电压下增加场会增加积累的电子密度。该现象通过导带边缘偏移来解释,该偏移是通过从头算正确预测的。我们的结果表明,CrPS 4 的能带结构取决于其磁状态,并揭示了一种以前未被发现的磁导机制。
使用场效应晶体管 (FET) 来探索具有传输测量的原子级薄磁性半导体是困难的,因为大多数 2D 磁性半导体的极窄带会导致载流子局域化,从而阻止晶体管工作。本文表明,CrPS 4 的剥离层(一种带宽接近 1 eV 的 2D 层状反铁磁半导体)可以实现在低温下正常工作的 FET。使用这些设备,可以测量电导率作为温度和磁场的函数,以确定完整的磁相图,其中包括自旋翻转和自旋翻转相。确定了磁导率,它在很大程度上取决于栅极电压。在电子传导阈值附近达到高达 5000% 的值。尽管研究中使用的 CrPS 4 多层厚度相对较大,但栅极电压还可以调整磁态。结果表明,需要采用具有足够大带宽的二维磁性半导体来实现正常运行的晶体管,并确定一种候选材料来实现完全栅极可调的半金属导体。
1。除非另有说明,否则任何问题的参考框架都是惯性的。2电流的方向是正电荷会漂移的方向。3,电势在距离分离点电荷的无限距离处为零。4除除非另有说明,否则所有电池和仪表都是理想的选择。5。平行板电容器的电场的边缘效应可以忽略不计。
从末端来看,螺线管产生的磁场指向页面。螺线管中的电流不断增加;因此,磁通量不断增加。根据楞次定律,由于磁通量不断增加并进入页面,线圈中的电流必须产生指向页面外的磁场;因此,线圈中的电流必须逆时针旋转,与磁通量的变化方向相反。
外部封面:为Helmholtz Coil设置的实验(信用:Sten Odenwald);电磁阀模型(信用:Paul Nylander);进行极性测量设置(信用:Sten Odenwald);智能手机显示(信用:Sten Odenwald);黑子上的磁性环(信用:NASA/TRACE)。内部封面:从左到右的顶行:太阳上的磁性线(NASA/SDO);笛卡尔的力线草图;地球磁场模型(信用:Gary A. Glatzmaier-洛斯阿拉莫斯国家实验室 - 美国能源部)。从左到右的底行:大强子(信用:CERN);磁性指南针的方向(信用:NOAA);黑子极性地图(信用:NASA/SDO)
准晶体(QC)具有独特的晶格结构,具有传统晶体所禁止的旋转对称性。其电学性质尚待完全了解,而磁长程有序是否能在准晶体中实现一直是一个存在已久的问题。最大的困难是缺乏微观理论来分析晶体电场(CEF)对准晶体中稀土原子的影响。这里我们展示了对Tb基准晶体中CEF的完整微观分析。我们发现由CEF引起的磁各向异性对于在Tb原子所在的二十面体上实现独特的磁纹理起着关键作用。我们对基于磁各向异性的最小模型的分析表明,以拓扑电荷为1为特征的刺猬长程有序在Tb基准晶体中是稳定的。我们还发现旋转矩态以异常大的拓扑电荷3为特征。结果表明,通过控制三元化合物中非稀土元素的成分,可以改变磁性结构和拓扑状态。我们的模型有助于理解稀土基量子阱和近似晶体中的磁性和拓扑性质。
摘要:由于 Pb 和 3d 过渡金属 (TM ) 氧化还原能级可能交叉,Pb 和 TM 之间的电荷转移导致钙钛矿家族 PbT MO 3 中从 Pb 2+ Ti 4+ O 3 连续演变为 Pb 4+ Ni 2+ O 3,这已被多份报告证实。然而,关于 PbT MO 3 系列中的 PbMnO 3 的信息知之甚少。钙钛矿 PbMnO 3 是最难合成的,尽管它的几何公差因子接近 1。本文,我们通过结构细化和高精度 X 射线吸收光谱 (XAS) 以及各种物理性质测量,仔细研究了在 15 GPa 下合成的 PbMnO 3。我们可以根据局部键合模型和 XAS 中 Pb 和 Mn 的价态合理化 PbMnO 3 的物理性质。此外,对 PbMnO 3 的全面研究使我们能够为整个 PbT MO 3 钙钛矿家族构建更一致的价态演变和电荷不均化图。