引言 1 一般背景 2 2.1 气味的定义 2 2.2 气味浓度与特征的区别 2 2.3 工业校准和标准化要求 2 恶臭气体标准的要求和实现 3 3.1 需要气味监测的工业过程 3 3.2 有气味物质的优先气体标准 5 3.2.1 二元标准 6 3.2.2 多组分标准 7 潜在客观嗅觉测量量表的研究 8 4.1 气味的分类 8 4.1.1 参考气味和“气味空间” 9 4.2 嗅觉分析(人体气味小组) 9 4.2.1 嗅觉分析的背景 9 4.2.2 气味小组测量 10 4.2.3 嗅觉计 12 4.2.4 气相色谱仪 (GC) 嗅探 13 4.2.5 气味值 13 4.3 气味感知理论 13 4.3.1 气味检测的生物模型 14 4.3.2 定量结构-活性关系 (QSARS) 14 4.3.3 分子振动-气味关系 15 4.4 非弹性电子隧道光谱 17 4.4.1 平面隧道光谱 17 4.4.2 扫描隧道显微镜技术 17 4.4.3 隧道光谱的模型计算 18 4.4.4 红外电子隧道光谱与气味之间的关系 20 4.4.5 红外吸收 23 有效的现场采样和测量方法 27 5.1 环境气味检测的要求27 5.2 取样方法 27 5.2.1 罐取样 27 5.2.2 吸附材料取样 28 5.3 测量方法 30 5.3.1 气相色谱法 (GC) 30 5.3.2 火焰离子化检测气相色谱法 (FlD) 31 5.3.3 硫化学发光法 32 5.3.4 气相色谱-质谱法 (GC-MS) 33 5.3.5 手性固定相气相色谱法 35 5.3.6 建议的环境气味分析方法 35 人工嗅觉计 (电子鼻) 的标准化和校准 37 6.1 电子鼻测量的背景 37 6.2 欧洲人工嗅觉感知网络 (NOSE) 38 6.3 标准化要求 38 结论40 7.1 气味标准 40
低速设施中风洞流质量测量和评估的现代框架 随着测试的复杂性增加,对风洞测试测量精度的要求也越来越严格。在风洞测试时间减少和测试成本增加的环境下,重要的是在较长时间内建立、维护和统计控制风洞设施中测量链所有组件的精确校准和验证。本文介绍了在贝尔格莱德军事技术学院的 T-35 4.4 m × 3.2 m 低速风洞中建立和维护测量质量控制系统所做的努力。该设施测量质量的保证基于确保三个主要组成部分的质量:风洞测试部分的校准、所用仪器的校准以及标准风洞模型的定期测试。本文介绍了相关风洞校准测试的样本结果,并将其与其他设施的结果进行了比较。测试证实了该设施的整体质量良好,并且必须保持、定期检查和系统记录所达到的质量水平。关键词:风洞流动质量;低速风洞;标准校准模型;AGARD-B;ONERA M4。
电池材料的线性热膨胀系数 固态金属合金的线性热膨胀系数 液态金属合金的体积膨胀系数 固态金属的密度 熔化/液态金属的密度 熔化时金属的密度变化 电池中液态金属的表观长度 活塞之间试件的表观长度 熔化时密度变化导致的电池中样品的长度变化 固态金属的长度变化 填充电池导致的熔化长度变化 试件加电池活塞的总长度 熔化时测量的总长度变化 试件加电池活塞的长度变化 金属样品的质量 电池半径与温度的关系 固态金属试件半径与温度的关系 合金的熔点,固相线 合金的熔点,液相线 相对于参考温度(通常为室温)的温度变化 熔融状态下金属的体积 低于固相线的任何温度 T 下的固态金属的体积 熔化时金属的体积变化 熔化开始时电池和样品之间的体积不匹配 测试开始时两个活塞的长度 温度从室温变化 I1T 时两个活塞的长度变化
物理学前沿领域近期发展的一个显著特点是,许多最激动人心的发展成果迅速催生出新的精密测量应用。精密计量似乎常常是许多新物理学的首次应用。作为证据,考虑超导中的宏观量子效应,它导致了电压标准和从直流到太赫兹频率的新型探测器,所有这些都是在国家标准实验室中开创的。同样,量化霍尔效应也迅速导致了原子电阻单位的实现。冷却或捕获少量离子或原子的能力已经导致了对基本常数的更精确测定,并可能导致新的频率标准。在扫描隧道显微镜及其衍生产品的众多应用中,尺寸测量创新至关重要。
摘要 心理测量越来越多地用于评估对系统自动化的信任,其中许多系统对安全至关重要。对于信任的最高测量水平,目前尚无共识。这很重要,因为测量水平决定了哪些数学和统计数据可以有意义地应用于评级。在这项工作中,我们介绍了一种新方法来确定心理测量评估现象的最高测量水平。我们利用这种方法,使用人类对执行搜索任务的无人机系统行为的评分来确定对自动化的信任的测量水平。结果表明,信任最好在序数级别上表示,并且在大多数情况下可以将其视为区间。对自动化的信任不太可能被视为比率。我们讨论了这些结果、它们的含义以及未来的研究。
精度规格为读数的 0.1%(或在此力下 +/- 10 lbf),测量值为 9990。设备是否在公差范围内?毕竟,校准实验室施加了 10,000 lbf,而测试单元 (UUT) 读数为 9990。偏差为 -10 lbf,设备符合其精度规格(接受决定而不考虑测量不确定度)。报告已发出,最终用户很满意。但是,问题是最终用户不应该满意。如果不考虑使用特定参考标准的校准实验室的校准和测量能力 (CMC),最终用户将不知道设备是否符合所需的精度规格。基本上,此测量是基于以下假设而通过的:校准提供商的参考是完美的,并且他们向称重传感器施加了恰好 10,000 lbf。但是,没有完美的测量。这就是为什么我们估计测量的不确定度来量化这种“测量的不完美”。 这是一个错误的假设,它忽略了校准提供商测量中的不确定性。
背景 仪器和测量系统的重要性日益增加。尤其是在航空领域,它们对于确保安全过程至关重要,因为在安全过程中,并非每个步骤都必须手动控制。数据从模拟转换为数字,然后在监视器或面板上进行处理和可视化。目前,加泰罗尼亚理工大学的 MCIA 创新电子中心为与仪器相关的航空学科开设了一系列新的实践课程。所有类型的传感器都通过 National Instruments 的采集系统连接到 LabView,以便在面板上分析和可视化数据。目的是提供一个系统,允许快速了解 LabView 的功能并获取有关专业采集和仪器环境中数据处理的知识。选择不同的传感器(具有不同的输出、数字、模拟、模块化等)并将它们连接到 LabView,可以将相同结果类型的每个其他传感器稍后连接到环境。只需稍加改动,每个传感器都可以在面板上可视化。工作目标 该项目的主要目标是设计和开发一个仪器和测量平台,通过采集系统和虚拟面板可视化一组传感器的数据。必须完成以下任务: