他启动了制造管理卓越中心,并担任其董事四年。他获得了李的杰出服务奖。多年来,他在诸如运营策略,运营管理概论,项目管理,运营设计以及制造计划和控制系统等主题上设计和教授了研究生和本科级别的课程。Lee曾担任“决策科学”的编辑,是《运营管理杂志》的创始编辑,并曾在几个编辑委员会任职。广泛出版了自己,为“决策科学”,“运营管理杂志”,“管理科学杂志”,“哈佛商业评论”和“接口”等期刊撰写了许多文章。他获得了五项最佳纸奖。Lee的专业领域包括操作策略,制造计划和控制系统,供应链管理以及主生产计划。 小加利根(Galligan) 他在密歇根州立大学获得了博士学位,曾在Babcock and Wilcox Company有过工业经验。 多年来,他有幸在各个级别的学生,MBA,执行MBA和博士学位上都有许多学生教授和了解有关运营管理的更多信息。 他获得了三项最佳纸奖。 他是其他几个专业组织的经常审稿人,讨论者和会议主席。 Manoj赢得了几个教学奖,包括Alfred G. Smith Jr.Lee的专业领域包括操作策略,制造计划和控制系统,供应链管理以及主生产计划。小加利根(Galligan)他在密歇根州立大学获得了博士学位,曾在Babcock and Wilcox Company有过工业经验。多年来,他有幸在各个级别的学生,MBA,执行MBA和博士学位上都有许多学生教授和了解有关运营管理的更多信息。他获得了三项最佳纸奖。他是其他几个专业组织的经常审稿人,讨论者和会议主席。Manoj赢得了几个教学奖,包括Alfred G. Smith Jr.拉里(Larry)的特殊专业知识领域是服务过程,运营策略,生产和库存系统,预测,多阶段制造和布局。一位活跃的研究人员,拉里的出版物已经出现在“决策科学”,“运营管理杂志”,“生产和运营管理杂志”,“哈佛商业评论”和“管理科学”等期刊上。他的研究主要集中于在制造和服务公司中的灵活资源,以及运营与供应链管理与其他业务领域之间的接口。他已被列为“美国人中的名人”中的列表,而马诺伊(Manoj)是“决策科学”和“运营管理杂志”的副编辑,“ POMS Journal”的过去区域编辑,以及“管理决策杂志”的编辑审查委员会成员,他是“管理杂志”,他是在本领域的几个专家,并且是COPORION of Copition and Copition and Copitie and Copitie and of Copoy and of Co-distore''管理“
微电子与纳米技术 Shamsuddin 研究中心 (MiNT-SRC) 是马来西亚敦胡先翁大学 (UTHM) 综合工程学院 (IIE) 下属的五个卓越中心 (CoE) 之一。该研究中心成立于 2006 年 11 月 27 日,前身为微电子与纳米技术中心 (MiNTEC),2007 年 11 月 25 日升级为研究卓越中心。MiNT-SRC 以 UTHM 董事会主席 Y.Bhg. Tan Sri Dato' Seri Ir Shamsuddin bin Abdul Kadir 的名字命名,以纪念他对 UTHM (2007-2009) 的贡献。MiNT-SRC 的目标是成为马来西亚南部微电子和纳米技术领域的领先研究中心。该研究中心由副教授 Marlia Morsin 博士领导,她从事基于纳米材料的传感器、真菌治疗和媒介控制领域的研究。此外,还有6名来自不同领域的首席研究人员,分别是Nafarizal Nayan教授(纳米等离子体处理和诊断)、Mohd Khairul Ahmad教授(纳米结构材料)、Soon Chin Fhong副教授(生物纳米技术、生物工程和物联网)、Fariza Mohamad副教授(使用电沉积的同质和异质结薄膜)、Farhanahani Mahmud副教授(医疗电子、嵌入式系统和人工智能)和Nur Hanis Hayati Hairom副教授(纳米技术、膜技术和废水处理)。这七位核心研究人员构成了MiNT-SRC研究进步的骨干。
目前,微电子设备中用于芯片到封装连接的最常用材料是铝(Al)焊盘和铜(Cu)线。然而,用于连接这些组件的引线键合工艺可能导致金属间化合物的形成,从而导致电化学腐蚀 [1 – 3] ,以及产生柯肯达尔空洞 [4,5] 。这些问题严重限制了微电子封装的长期可靠性。为了解决半导体行业对材料的成本效益、性能和可靠性的担忧。自 21 世纪初以来,人们定期评估铜焊盘上的铜线键合(Cu-to-Cu 键合)方法,但从未发展成为工业应用。2018 年的综述 [6] 总结了挑战和局限性。铜是一种很有前途的微电子材料,因为它的电导率与铝的电导率之比为 5:3,而且熔点高,大大降低了电迁移 [7]。电沉积铜的固有特性,例如与发芽/生长类型相关的杂质和微观结构演变,会使其对腐蚀敏感。虽然铜的氧化膜提供了一定的防腐蚀保护,但它不像不锈钢等其他金属上形成的钝化膜那样稳定、致密或均匀 [8,9]。铜焊盘的集成对半导体行业提出了重大挑战。实现铜的受控表面状态对于实现与封装的可靠连接至关重要。
学生责任:如果学生不确定自己在课程中的排名以及获得不及格分数的可能性,则有责任联系教师。学生还应熟悉《条例》第 4 节和第 6 节,其中涉及未完成学期作业、延期考试、出勤和退学等。
抽象的压电能量收集系统在通过低频操作为微电动设备供电方面起着至关重要的作用。在这里,已经为低功率电子设备开发了一种新型的压电能量收集设备。开发的压电能量收集系统由一个悬臂向外投射,悬臂一端连接到风圈,另一端连接到扭转弹簧。开发的压电能量收集系统在通电的微电器设备中的应用。悬臂向内放在压电电晶体堆栈中。当风击中时,会在防线器中产生涡流,该涡流振荡并在压电晶体堆栈中产生压力,以开发电能。从压电能量收集系统获得的输出电压不会影响压电晶体的任何输入频率。获得的结果表明,开发的压电能量收集系统会产生120-200 eV,为2.9×10 16 –4.84×10 16 Hz频率,考虑到基本电荷单元为40,对于4-9 m/s的可变风流。这项研究旨在开发用于低功率微电动设备的有效风能的压电能量收集系统。
无铅锡基焊点通常具有单晶粒结构,取向随机,且特性高度各向异性。这些合金通常比铅基焊料更硬,因此在热循环期间会向印刷电路板 (PCB) 传递更多的应力。这可能会导致靠近焊点的 PCB 层压板开裂,从而提高 PCB 的柔韧性,减轻焊点的应变,进而延长焊料疲劳寿命。如果在加速热循环期间发生这种情况,可能会导致高估现场条件下焊点的寿命。在本研究中,使用偏光显微镜研究了连接陶瓷电阻器和 PCB 的 SAC305 焊点的晶粒结构,发现其大多为单晶粒。热循环后,在焊点下的 PCB 中观察到裂纹。这些裂纹很可能是在热循环的早期阶段在焊料损坏之前形成的。为了详细研究这些观察结果,我们开发了一种有限元模型,该模型结合了单晶焊点随温度变化的各向异性热性能和机械性能。该模型能够以合理的精度预测 PCB 和陶瓷电阻焊点中损伤起始的位置。它还表明,即使长度非常小的 PCB 裂纹也可能显著降低焊点中累积的蠕变应变和蠕变功。所提出的模型还能够评估焊料各向异性对陶瓷电阻相邻(相对)焊点损伤演变的影响。
目标。在体内开发和体内演示具有数字地址的螺纹式无线植入神经刺激器。方法。这些设备通过其两个电极执行,通过表皮纺织电极传导通过体积传导传递的无害高频电流爆发。通过避免需要大型组件获得电能,这种方法允许开发薄设备,这些设备可以通过最小的入侵程序(例如注射)肌肉内植入。为了符合电气安全标准,该方法需要在植入电极之间按毫米或几厘米的少量订单或几厘米的最小距离。此外,设备必须对组织造成最小的机械损害,避免脱位并足以长期植入。考虑到这些要求,植入物被视为管状和柔性设备,在相对末端有两个电极,在中间部分,是一个藏有电子设备的密封金属胶囊。主要结果。The developed implants have a submillimetric diameter (0.97 mm diameter, 35 mm length) and consist of a microcircuit, which contains a single custom-developed integrated circuit, housed within a titanium capsule (0.7 mm diameter, 6.5 mm length), and two platinum- iridium coils that form two electrodes (3 mm length) located at opposite ends of a silicone body.这些神经肌肉刺激器是可寻址的,可以建立一个可以独立控制的微刺激器网络。意义。通过在麻醉兔子的后肢中注入其中一些,并诱发受控和独立的收缩,证明了它们的操作。这些结果表明,通过使用适用于慢性电子植入物建立的制造技术和材料,制造类似螺纹的无线神经肌肉刺激器的可行性。这为通过此类无线设备的密集网络形成的高级运动神经预测的临床开发铺平了道路。
摘要:改善脆性底物上纳米化薄膜的界面稳定性对于诸如微电子等技术应用至关重要,因为所谓的脆性 - 延性 - 延性 - 延性界面限制了其整体可靠性。通过调整薄膜特性,由于分层过程中的外部韧性机制,可以改善界面粘附。在这项工作中,在模型的脆性 - 凝胶界面上研究了膜微结构对界面粘附的影响,该模型由脆性玻璃底物上的纳米化cufim插头组成。因此,使用磁控溅射将110 nm薄的Cu纤维沉积在玻璃基板上。虽然在溅射过程中保持纤维厚度,残留应力和纹理的质地可比,但在沉积过程中和通过等温退火过程中,纤维微结构变化了,导致四个不同的cufifms产生了晶粒尺寸分布。然后使用应力的MO覆盖剂确定每个Cufim的界面粘附,这触发了直接自发扣的形状的Cufifm分解。每个薄膜的混合模式粘附能的范围从较大晶粒的膜的2.35 j/m 2到4.90 j/m 2的纤维,对于纳米晶粒量最高的薄膜。使用聚焦的离子束切割和通过共聚焦激光扫描显微镜对扣子进行额外研究,可以通过对扣的额外研究进行清晰的效果,以将其切换并量化固定在弯曲的薄膜中的弹性和塑性变形的量。关键字:薄膜粘附,脆性 - 延性界面,自发扣,纤维微观结构,纳米化的cufifms可以证明,具有较小晶粒的膜表现出在分层过程中吸收更高量的能量的可能性,这解释了它们较高的粘附能量。
摘要 — 纳米结构氧化锌 (ZnO) 因其独特的特性和在不同领域应用的可能性在过去几年中引起了人们的广泛关注,包括用作气体传感器件中的活性层和场发射器件的有前途的发射器。虽然它对 FE 目的很有趣,但这种材料的合成可能很复杂且与微电子工艺不兼容。为了解决这个问题,本文探讨了通过非催化剂热氧化法生长 ZnO 纳米线。通过拉曼光谱、X 射线光电子能谱、X 射线衍射和扫描电子显微镜详细表征了原生纳米材料。这些表征证实,所采用的工艺在整个基底表面获得高密度的 ZnO 纳米级结构方面取得了成功。ZnO 纳米线的直径范围为 30 至 100 纳米,长度可达 4 微米。获得了高效的电子场发射特性,开启电场较低(2.4 伏/微米,电流密度为 360 皮安/平方厘米)。基于图像处理的创新系统允许在器件的整个有效区域内进行电流映射,从而提供有关发射电流均匀性的信息。这些结果表明,所采用的低复杂制造程序以及 ZnO 纳米材料本身适用于基于场发射的器件。
