香港,2024年11月7日 — 数码港与上海临港经济发展集团(临港集团)作为人工智能产业的推动者,自2023年建立战略合作伙伴关系以来,合作无间,推动香港与上海协同创新创业。双方积极响应国家加快培育优质新生产力的号召,推动人工智能生态圈和产业发展。今天,双方携手一家内地领先的人工智能公司,在第七届中国国际进口博览会期间宣布成立“沪港人工智能产业加速联盟”(联盟)。这家内地领先的人工智能公司将利用其在计算基础设施方面的丰富行业经验以及在上海和香港的发展,进一步扩大创新科技合作,对接高科技资源,共建人工智能和高科技生态圈,加速两地形成优质新生产力。联盟成员包括上海、香港的人工智能领军企业,以及MiniMax、Pegasus、Laurry AI、MateZ Lab、Sourcy.ai等科技新秀。
课程内容/教学大纲简介:范围;历史、趋势和未来方向。通过搜索解决问题:生产系统和人工智能;图搜索策略:无信息搜索、启发式搜索技术;约束满足问题;随机搜索方法;搜索博弈树:极小极大、Alpha-Beta 剪枝。知识表示和推理:人工智能中的谓词演算:语法和语义、表达力、统一性、解析度;解析度反驳系统;情境演算。不确定性下的推理:不确定性概念;不确定知识和推理、概率;贝叶斯网络。规划:使用状态空间搜索进行规划;规划图;偏序规划。决策:顺序决策问题、最优策略算法。机器学习:从观察中学习:不同形式学习的概述、学习决策树、计算学习理论、统计学习方法、神经网络和联结主义学习。
2 数学工具. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 图像、核和支持度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.6 值得注意的线性算子类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
评估 ML 算法的性能 UNIT - I:简介:AI 问题、代理和环境、代理结构、问题解决代理基本搜索策略:问题空间、无信息搜索(广度优先、深度优先搜索、深度优先与迭代深化)、启发式搜索(爬山法、通用最佳优先、A*)、约束满足(回溯、局部搜索) UNIT - II:高级搜索:构建搜索树、随机搜索、AO* 搜索实现、极小极大搜索、Alpha-Beta 剪枝基本知识表示和推理:命题逻辑、一阶逻辑、前向链接和后向链接、概率推理简介、贝叶斯定理 UNIT - III:机器学习:简介。机器学习系统,学习形式:监督学习和无监督学习,强化 – 学习理论 – 学习可行性 – 数据准备 – 训练与测试和拆分。第四单元:监督学习:回归:线性回归、多元线性回归、多项式回归、逻辑回归、非线性回归、模型评估方法。分类:支持向量机 (SVM)、朴素贝叶斯分类
科目代码:CCSCA11 核心课程 XIII - 人工智能 第一单元 人工智能定义 – 人工智能技术 – 人工智能应用 – 问题 – 问题空间和搜索 – 将问题定义为状态空间搜索 – 生产系统 – 问题特征。 第二单元 启发式搜索 – 生成和测试 – 爬山法 – 广度优先搜索 – 最佳优先搜索 – 问题简化 – 约束满足 – 手段目的分析。 第三单元 游戏 – 极小最大搜索 – 添加 alpha – beta 截止值 – 谓词逻辑 – 表示简单事实和逻辑可计算函数和谓词 – 解析 – 自然演绎。 第四单元 使用规则表示知识 – 程序性与陈述性知识 – 前向推理与后向推理 – 非单调推理。 第五单元 专家系统 – 结构 – 组件 – 专家系统开发过程 – 专家系统开发工具。 教科书:1. Elaine Rich 和 Kevin Knight 著《人工智能》,Tata McGraw Hill,第二版。 2. David Rolston 著《人工智能与专家系统开发原理》,McGraw Hill。 3.《人工智能与专家系统》,K.Meena 和 R.Dhanapal 著,国际图书,2000 年。
摘要 - 班迪斯作为序列学习的理论基础,也是现代收获系统的算法基础。但是,推荐系统通常依赖于用户敏感的数据,从而使隐私成为关键问题。本文有助于理解具有可信赖的集中决策者的土匪的差异隐私(DP),尤其是确保零集中差异隐私(ZCDP)的含义。首先,我们根据考虑的输入和相互作用协议进行形式化和比较DP的不同适应性。然后,我们提出了三种私人算法,即ADAC-UCB,ADAC-GOPE和ADAC-OFUL,用于三个土匪设置,即有限的武装匪徒,线性匪徒和线性上下文匪徒。三种算法共享一个通用算法蓝图,即高斯机制和自适应发作,以确保良好的隐私 - 实用性权衡。我们分析并限制了这三种算法的遗憾。我们的分析表明,在所有这些环境中,与遗憾的遗憾相比,强加了ZCDP的价格(渐近)可以忽略不计。接下来,我们将遗憾的上限与第一个Minimax下界补充了与ZCDP的匪徒的遗憾。为了证明下限,我们阐述了一种基于耦合和最佳运输的新证明技术。我们通过实验验证三种不同的匪徒设置的理论结果来得出结论。索引术语 - 差异隐私,多军匪徒,重新分析,下限
当协变量p的尺寸可以达到样本量n的恒定分数时,我们考虑测试单个系数是否等于线性模型中的问题。在这个制度中,一个重要的主题是提出具有有限型构图的有效尺寸控制的测试,而无需噪声遵循强烈的分布假设。在本文中,我们提出了一种称为剩余置换测试(RPT)的新方法,该方法是通过将回归残差投射到原始设计矩阵和置换设计矩阵的柱子空间的空间正交中来构建的。rpt可以在固定设计下以可交换的噪声在固定设计下实现有限的人口尺寸有效性,每当P 此外,对于重型尾部噪声, rpt均具有渐近强大的功能,该噪声(1 + t)的订单矩至少在t∈[0,1]中至少属于n -t/(1 + t)阶时。 我们进一步证明了这种信号大小的要求在最小值意义上本质上是最佳的速率。 数字研究结合了RPT在具有正常和重尾噪声分布的各种模拟设置中表现良好。rpt均具有渐近强大的功能,该噪声(1 + t)的订单矩至少在t∈[0,1]中至少属于n -t/(1 + t)阶时。我们进一步证明了这种信号大小的要求在最小值意义上本质上是最佳的速率。数字研究结合了RPT在具有正常和重尾噪声分布的各种模拟设置中表现良好。数字研究结合了RPT在具有正常和重尾噪声分布的各种模拟设置中表现良好。
印度安得拉邦。摘要:该项目是关于开发带有人工智能的吃豆人游戏。吃豆人游戏是一款非常具有挑战性的视频游戏,可用于进行人工智能研究。在这里,我们为吃豆人游戏实施各种人工智能算法的原因是,它有助于我们通过使用可视化来研究人工智能,通过可视化我们可以更有效地理解人工智能。主要目的是构建一个智能吃豆人代理,该代理可以通过迷宫找到最佳路径以找到特定目标,例如特定的食物位置,逃离鬼魂。为此,我们实施了人工智能搜索算法,例如深度优先搜索、广度优先搜索、A*搜索、均匀成本搜索。我们还实施了多代理,例如反射代理、极小最大代理、Alpha-beta 代理。通过这些多代理算法,我们可以让吃豆人根据其环境条件做出反应并逃离鬼魂以获得高分。我们还完成了上述人工智能算法的可视化部分,任何人都可以轻松学习和理解人工智能算法。为了实现算法的可视化,我们使用了 Python 库 matplotlib 和 NetworkX(用于绘制所探索状态的图形)。
摘要 — 为满足移动用户日益增长的服务期望并避免频段切换速度慢的问题,设备到设备 (D2D) 通信在物联网 (IoT) 中受到了广泛研究关注。虽然新兴的 D2D 节点可以支持异构频段 [射频 (RF),包括 2.4 GHz/5 GHz 无线局域网 (WLAN)、38 GHz 毫米波 (mmWave) 和可见光通信 (VLC)],但物理限制(例如阻塞)要求用户设备在频段之间动态切换,以避免连接丢失和吞吐量下降。在本文中,我们研究了混合 RF-VLC 场景中用于直接用户数据处理的有效在线链路选择。首先,我们将多频段选择问题建模为多臂老虎机 (MAB) 问题。源/中继节点充当玩家,通过选择合适的臂(即可用频段(WLAN、mmWave 或 VLC))来最大化其长期反馈/奖励。然后,我们提出了一种在线、能量感知频段选择 (EABS) 方法,利用三种理论上有保证的 MAB 技术 [置信上限 (UCB)、汤普森采样 (TS) 和极小极大值
在安全性应用程序中,机器学习模型应在最坏情况下的分配变化下概括,也就是说,具有较小的强大风险。基于不变性的算法可以证明,当训练分布足够异质以识别强大风险时,可以利用对轮班的结构假设。但是,在实践中,这种可识别性条件很少满足 - 到目前为止,这种情况在理论文献中尚未得到充实。在本文中,我们旨在填补空白,并建议在仅部分可识别鲁棒的风险时研究更通用的环境。尤其是我们引入了最坏的稳健风险,作为一种鲁棒性的新度量,无论可识别性如何,它总是定义明确的。其最小值对应于算法独立的(种群)最小值的数量,该数量可在部分可识别性下测量最佳可实现的鲁棒性。虽然可以更广泛地定义这些概念,但在本文中,我们将其介绍并明确地得出了线性模型以实现介绍的具体性。首先,我们表明在部分可识别的情况下,现有的鲁棒性方法是次优的。然后,我们评估了这些方法和(经验性的)最差案例鲁棒风险在现实世界基因表达数据上的鲁棒风险,并找到类似的趋势:随着未看见环境的数据的增加,现有鲁棒性方法的测试误差越来越高,而对部分识别性的识别则可以更好地普遍性化。