本文提出将氨基酸改性氧化石墨烯衍生物 (GO-AA) 作为活性材料,用于捕获水介质中的有机污染物并进行电化学检测。草甘膦 (GLY) 是一种存在于许多水体中的除草剂,被选为基准物质,以测试这些材料的电活性有效性,从而为捕获事件提供直接证据。通过环氧环开环反应将 L -赖氨酸、L -精氨酸或 L -蛋氨酸接枝到 GO 表面,促进氨基酸结合并伴随 GO 的部分还原。合成过程导致电荷电阻从 GO 的 8.1 K Ω 降至各种 GO-AA 的 0.8 – 2.1 K Ω,从而支持这些材料在电化学传感中的适用性。所得 GO-赖氨酸、GO-精氨酸和 GO-蛋氨酸用于从水中吸附 GLY。 GO-Lysine 与 GLY 的相互作用最强,1 小时后的去除效率为 76%,大约是工业基准吸附剂颗粒活性炭的两倍。当用作活性材料捕获 GLY 并进行电化学检测时,GO-AA 的性能也优于原始未改性材料。GO-Lysine 表现出最佳灵敏度,即使浓度低至 2 μ g/L 也能识别水中的 GLY。分子动力学模拟证实,这种材料增强的性能可归因于赖氨酸部分和 GLY 之间的氢键和盐桥相互作用,而氢键和盐桥相互作用源于氢键和盐桥相互作用。
随着人脸识别系统 (FRS) 的部署,人们开始担心这些系统容易受到各种攻击,包括变形攻击。变形人脸攻击涉及两张不同的人脸图像,以便通过变形过程获得一个与两个贡献数据主体足够相似的最终攻击图像。可以通过视觉(由人类专家)和商业 FRS 成功验证所获得的变形图像与两个主体的相似性。除非此类攻击能够被检测到并减轻,否则人脸变形攻击会对电子护照签发流程和边境管制等应用构成严重的安全风险。在这项工作中,我们提出了一种新方法,使用新设计的去噪框架来可靠地检测变形人脸攻击。为此,我们设计并引入了一种新的深度多尺度上下文聚合网络 (MS-CAN) 来获取去噪图像,然后将其用于确定图像是否变形。在三个不同的变形人脸图像数据集上进行了广泛的实验。还使用 ISO-IEC 30107-3 评估指标对所提出方法的变形攻击检测 (MAD) 性能进行了基准测试,并与 14 种不同的最新技术进行了比较。根据获得的定量结果,所提出的方法在所有三个数据集以及跨数据集实验中都表现出最佳性能。
已知由形成 J 聚集体的有机染料组成的超分子组装体表现出窄带光致发光,半峰全宽约为 ≈ 9 nm (260 cm − 1 )。然而,这些高色纯度发射体的应用受到菁 J 聚集体相当低的光致发光量子产率的阻碍,即使在溶液中形成也是如此。本文证明了菁 J 聚集体在室温下在水和烷基胺的混合溶液中可以达到高一个数量级的光致发光量子产率(从 5% 增加到 60%)。通过时间分辨的光致发光研究,显示了由于非辐射过程的抑制导致激子寿命的增加。小角度中子散射研究表明了这种高发射性 J 聚集体的形成必要条件:存在用于 J 聚集体组装的尖锐水/胺界面以及纳米级水和胺域共存以分别限制 J 聚集体尺寸和溶解单体。
掌印官兼司法部长埃里克·杜邦-莫雷蒂 (Éric Dupond-Moretti) 和武装部队部长塞巴斯蒂安·勒科尼 (Sébastien Lecornu) 将前往蒙蒂尼莱梅斯签署三项协议,以扩大两部之间的伙伴关系。
Ankeny、Munsie 和 Leach (2022) 为 iBlastoids 提出的反思、预期和审议 (RAD) 方法虽然很有价值,但需要一个锚点来确保其方法的每个过程都已充分进行。否则,反思、预期和审议可能会偏离航向或过早结束。我们建议将 RAD 方法锚定到复杂性的道德原则上;(当前或潜在的) 类器官实体在本体论和认识论上越复杂,就越需要对该实体进行道德考量。基于 Preiser 和 Cilliers (2010) 的观点,类器官实体的复杂性可以有两个关键要素;类器官实体的特征和功能(本体论复杂性),以及我们目前对类器官实体的理解的功能(认识论复杂性)。这些复杂程度越高,RAD 方法就越需要关注这些要素——以免我们忽略潜在的道德显著特征、功能或知识。例如,对于肠道类器官,反思、预期和审议可能不需要像对于脑类器官、iBlastoids 或多细胞工程化生命系统 (M-CELS) 那样强大 (Sample 等人,2019)。这至少部分是因为脑类器官、iBlastoids 或 M-CELS 等类器官实体的复杂程度超过了肠道类器官。此外,它们的复杂特征和功能中有一些元素可能被视为道德显著的。因此,RAD 流程需要更多时间和精力来解决这些特征、功能和目前的理解。负责任的研究创新 (RRI) 框架的先前迭代将重点放在更好地
保时捷 911 已连续生产 50 多年,其发展、演变、改进、成熟和转型的风格是其他汽车从未经历过的。这是行业现象,这款经久不衰的跑车至今仍吸引着新粉丝,就像 1963 年推出后一样。911 最迷人的方面之一是,其规格不仅在几代中不断发展,而且经常经过彻底的重新设计,以实现不断提高的性能、可靠性、舒适性,当然还有制造商的盈利能力。《保时捷 911 原版》一书的第一版于 1993 年出版,旨在为爱好者提供高质量的参考资料,不仅能识别不同代 911 之间的差异,还能展示同一类型的类似车型之间的差异。1998 年,第二版问世,增加了 993 系列。它已成为该车型的标准参考,并至少以七种语言出版,进一步证明了爱好者对这款有时古怪但总是令人兴奋的后置发动机跑车的持久热爱。随着 1997 年“新一代”水冷 911 的推出,之前的车型几乎立即成为经典。风冷 911 已成为保时捷最佳车型的代表,人们对该车型的热情也急剧上升。凭借无与伦比的比赛成功魅力、老派质量和可靠性标准,以及最重要的,一眼就能认出来的外形,这些 911 现在是世界上最受追捧的经典车型——无论是 20 世纪 60 年代开创性的 2.0 升还是相对豪华的 993 Turbo S。这本书持续受欢迎的关键在于,我在 20 世纪 90 年代初期和中期能够接触到保时捷的营销和存档生产记录。在今天的超级企业保时捷中,这种接触已不复存在。那时,人们只需打电话给掌握信息的相关工作人员,坐在空余办公桌前翻看他经常布满灰尘的文件即可。在那些日子里,在保时捷进行研究是一次难忘的经历,尤其是因为非凡的热情将整个企业凝聚在一起。我很荣幸这些数据自此被大量复制,并且这本书仍然是风冷 911 生产的有效年表。尽管有些
ErbB 受体家族(包括 EGFR 和 HER2)在细胞生长和存活中起着至关重要的作用,并与乳腺癌和肺癌等各种癌症的进展有关。在本研究中,我们开发了一个深度学习模型,使用基于 SMILES 表示的分子指纹来预测 ErbB 抑制剂的结合亲和力。每种 ErbB 抑制剂的 SMILES 表示均来自 ChEMBL 数据库。我们首先从 SMILES 字符串生成 Morgan 指纹,并应用 AutoDock Vina 对接来计算结合亲和力值。根据结合亲和力过滤数据集后,我们训练了一个深度神经网络 (DNN) 模型来根据分子指纹预测结合亲和力值。该模型取得了显著的性能,训练集上的均方误差 (MSE) 为 0.2591,平均绝对误差 (MAE) 为 0.3658,R 平方 (R²) 值为 0.9389。尽管在测试集上性能略有下降(R² = 0.7731),但该模型仍然表现出强大的泛化能力。这些结果表明深度学习方法对于预测 ErbB 抑制剂的结合亲和力非常有效,为虚拟筛选和药物发现提供了宝贵的工具。
免疫检查点抑制剂(ICI)正在彻底改变几种实体瘤恶性肿瘤的治疗局势,包括非小细胞肺癌(NSCLC)。ICIS针对编程死亡1(PD-1)/PD-LIGAND 1(PD-L1)轴现在是第一线和第二线设置中转移性NSCLC的护理标准(1-9)。骨转移(BOM)在NSCLC中非常普遍,在疾病过程中,多达40%的患者患有BOM的患者(10)。boms会经常引起与骨骼有关的事件(SRE),例如棘手的骨痛,神经系统损害,高钙血症和病理性骨折,从而导致东部合作肿瘤学群体绩效状况(ECOG PS)的降低,生活质量(11-13)。此外,BOM的存在是整体生存的不良预后因素(OS)(14)。洞察力对BOM是否应对ICI等系统性疗法是否对多学科决策至关重要,并可能阻止不必要的干预。相反,可以通过放射治疗(RT)或骨科手术进行战略治疗,以防止进行性发病率,可以在战略上进行策略性治疗。越来越多的证据表明转移性疾病的解剖部位会影响对ICI的反应(15,16)。临床前和临床研究表明,器官特异性反应性的不同模式(17-28)。这可能是由于转移到不同器官的恶性细胞的肿瘤生物学差异以及肿瘤免疫微环境(TIME)固有的不同解剖组织细胞种群的变化(29 - 32)。正常骨体内平衡的改变会为肿瘤扩张带来物理空间,并诱导生长因子和细胞因子的释放,从而进一步支持肿瘤生长和免疫抑制时间(13、33)。骨骼时间内免疫抑制的机制包括细胞毒性T细胞和天然杀伤(NK)细胞的种群减少,包括调节性T细胞(Tregs)(Tregs)和髓样衍生的抑制细胞(MDSC)(MDSC)(MDSC)的抑制细胞种群增加,以及细胞因子环境有利于肿瘤生长(13、22、22、34、35、34、35、34、35)。这在很大程度上是由从骨吸收释放的组织生长因子β(TGF-b)的超生理水平驱动的(22)。初步研究已经鉴定出接受ICIS治疗的BOM的患者的临床结果较低,并且治疗反应率较低,这表明ICI在BOMS中的有效性较低(15、24、36)。在最近对1959年接受
摘要 在图灵的“通用机器”之后,本文将直觉作为一个生成性概念和镜头来展现战后跨大西洋文化中人机关系的有效谱系。作为一种超越理性分析的感知、认识、预测和驾驭世界的方式,直觉对于适应我们当代的“算法条件”至关重要,在这种条件下,机器学习技术正在积极地重新分配人类和机器之间的认知,改变(非)人类经验的性质,并重新表达文化价值和欲望的问题。本文关注三个关键的历史时刻,使我们能够回顾性地瞥见英国和北美对我们与“新”技术不断变化的关系的兴趣和紧迫感的新兴凝聚—— 1) 20 世纪 50 年代:人工智能和控制论的诞生; 2)20 世纪 80 年代:个人电脑和软件文化的兴起;3)2010 年代:算法生活的开始。在每个时期,直觉的特定方面都表现出重要的作用,激发了我们与计算技术的情感和文化纠葛。虽然直觉在特定的历史关头获得了有效的牵引力,既是“人类”的本质定义,也是非人类的本质定义,但我认为,解决当前机器学习架构所引发的感官、社会政治、文化和伦理问题,需要适应内在的人机算法纠葛以及它们所居住和不断重塑的技术社会生态。
近年来,检测变形人脸图像的任务变得非常重要,以确保基于人脸图像的自动验证系统(例如自动边境控制门)的安全性。基于深度神经网络 (DNN) 的检测方法已被证明非常适合此目的。然而,它们在决策过程中并不透明,而且不清楚它们如何区分真实人脸图像和变形人脸图像。这对于旨在协助人类操作员的系统尤其重要,因为人类操作员应该能够理解其中的推理。在本文中,我们解决了这个问题,并提出了聚焦分层相关性传播 (FLRP)。该框架在精确的像素级别向人类检查员解释深度神经网络使用哪些图像区域来区分真实人脸图像和变形人脸图像。此外,我们提出了另一个框架来客观地分析我们方法的质量,并将 FLRP 与其他 DNN 可解释性方法进行比较。该评估框架基于移除检测到的伪影并分析这些变化对 DNN 决策的影响。特别是,如果 DNN 的决策不确定甚至不正确,与其他方法相比,FLRP 在突出显示可见伪影方面表现得更好。