小细胞肺癌 (SCLC) 是一种恶性肿瘤,其特征是生长迅速、早期转移和获得性治疗耐药。大多数 SCLC 患者处于广泛期 (ES) 疾病,即首次诊断时转移性疾病已超出半胸腔范围。SCLC 一直被认为是“药物开发的坟墓”,直到最近,化疗仍然是一线和二线治疗的标准治疗方法。与 NSCLC 相比,确定 SCLC 的治疗靶点一直很困难,部分原因是驱动突变主要是功能丧失,涉及肿瘤抑制基因 RB1 和 TP53 或目前无法靶向(例如 MYC 家族成员的扩增)。最近对 SCLC 细胞系、患者样本和代表性小鼠模型的基因表达谱分析已导致 SCLC 的四种主要亚型被提出,这些亚型以四种关键转录调节因子(ASCL1、NEUROD1、POU2F3 和 YAP1)的差异表达为特征。由于该领域研究人员的持续努力,我们对 SCLC 生物学的理解最近确实有了显著提高,但治疗方案仍然令人沮丧。虽然免疫疗法试验的最新结果令人鼓舞,但大多数患者对目前的治疗方案表现出原发性或快速获得性耐药性,这突出表明需要提高疗效并扩大目前治疗策略的范围。在这篇评论文章中,我们将讨论 SCLC 治疗的最新进展,重点关注当前对信号通路的理解、免疫疗法和靶向疗法的作用以及 SCLC 治疗反应的新兴生物标志物。
迫切需要创新疗法来应对癌症的根本驱动因素,以抵消进行性转移性疾病必然导致的致命后果。执行细胞周期激活和控制机制的缺陷是近端致癌驱动因素之一,因此针对失调的细胞周期控制元件已成为主要的调控主题和治疗策略( Gordon 等人,2018 年)。介入性细胞周期抑制剂疗法,例如 DeltaRex-G — 一种肿瘤靶向逆转录载体,编码细胞周期蛋白 G1(CCNG1 致癌基因)的杀细胞“显性负”(dnG1)表达构建体;dnG1 表达阻断细胞周期蛋白 G1/Cdk/myc/Mdm2/P53 轴的细胞活化、转录控制和存活功能。 DeltaRex-G 已被证实能够在存在或不存在功能性 p53 基因座(TS53 肿瘤抑制基因)的情况下诱导增殖性肿瘤细胞和支持性新生血管的凋亡,在多种肿瘤类型中表现出广泛的临床效用。DeltaRex-G 已在全球 280 多名癌症患者中进行了 1 期和 2 期研究,在包括胰腺癌、骨肉瘤、软组织肉瘤、乳腺癌和 B 细胞淋巴瘤在内的难治性转移性癌症患者中诱导长期(> 10 年)存活率(Kim 等人,2017 年;Al-Shihabi 等人,2018 年;Gordon 等人,2018 年;Liu 等人,2021 年)。因此,建议对 DeltaRex-G 进行进一步的临床开发和扩大其可及性,以用于几乎没有或完全没有治疗选择的癌症患者。
肺癌是全球男女最普遍的癌症之一。核酸G4结构已与某些癌症(例如肺癌)的癌症相关基因的转录程序有关。然而,主要的G4分解DHX36在肺癌进展中的作用尚不清楚。在这项研究中,通过对公共数据集的生物信息学分析(TCGA和GEO),我们发现DHX36是具有亚型依赖性的非小细胞肺癌(NSCLC)的独立预后指标。DHX36的稳定慢病毒敲低导致肺癌细胞中S期亚群的加速迁移和聚集。DHX36水平的降低消除了肺癌细胞对化学治疗药物(如紫杉醇和细胞依赖性)的增殖反应。该解旋酶的敲低导致肿瘤生长,这是由3D荧光球体肺癌模型所证明的,并且刺激细胞集落形成,如单细胞培养所示。高吞吐量蛋白质组学阵列表明,DHX36通过调节多种信号传导途径在肺癌细胞中的功能,包括蛋白质活性的激活,蛋白质自体磷酸化,FC受体信号信号通路,对肽激素激活的蛋白质激活蛋白蛋白激酶信号助理的反应。因果转录组分析表明,DHX36与mRNA监视,RNA降解,DNA复制和MYC靶标显着相关。因此,我们公布DHX36提出了临床意义,并在肺癌的肿瘤抑制中起作用,并提出了基于解旋酶特异性靶标的抗癌治疗的潜在新概念。
前列腺癌(CAP)仍然是西方男性癌症死亡的第二大原因。发生这些死亡是因为转移帽获得了对可用治疗的抵抗力。在过去的十年中,在诊所中引入的新型和功能多样的治疗方案最终引起了分子基础各种各样的耐药性。CAP的起始和进展均与增强的细胞增殖和细胞周期失调有关。对控制细胞分裂和帽进展过程中控制细胞分裂和增殖的特定促增殖性分子移位有更好的了解最终可能会克服耐药性。在这里,我们研究文献以支持这种可能性。我们首先回顾了最近对前列腺细胞类型的新见解及其增殖和致癌潜力。然后,我们概述了负责细胞周期进展的分子机械的基本知识及其通过良好认可的瓶盖进展驱动因素(例如雄激素受体和视网膜细胞母细胞瘤蛋白)的调节。在这方面,我们特别关注细胞周期调节剂与雄激素受体之间的相互作用和相互相互作用。在从治疗过程中,到castration-castration-recurrent的进展过程中,会影响细胞周期相关的和受调节的基因,并在某些情况下,讨论了神经内分泌帽。我们还考虑了影响细胞周期决定因素的非基因组事件,包括在帽进展过程中发生的转录,表观遗传和微环境开关。最后,我们评估了细胞周期调节剂的治疗潜力,并解决了调节其CAP治疗作用的方法中的挑战和局限性。
前列腺癌(CAP)仍然是西方男性癌症死亡的第二大原因。发生这些死亡是因为转移帽获得了对可用治疗的抵抗力。在过去的十年中,在诊所中引入的新型和功能多样的治疗方案最终引起了分子基础各种各样的耐药性。CAP的起始和进展均与增强的细胞增殖和细胞周期失调有关。对控制细胞分裂和帽进展过程中控制细胞分裂和增殖的特定促增殖性分子移位有更好的了解最终可能会克服耐药性。在这里,我们研究文献以支持这种可能性。我们首先回顾了最近对前列腺细胞类型的新见解及其增殖和致癌潜力。然后,我们概述了负责细胞周期进展的分子机械的基本知识及其通过良好认可的瓶盖进展驱动因素(例如雄激素受体和视网膜细胞母细胞瘤蛋白)的调节。在这方面,我们特别关注细胞周期调节剂与雄激素受体之间的相互作用和相互相互作用。在从治疗过程中,到castration-castration-recurrent的进展过程中,会影响细胞周期相关的和受调节的基因,并在某些情况下,讨论了神经内分泌帽。我们还考虑了影响细胞周期决定因素的非基因组事件,包括在帽进展过程中发生的转录,表观遗传和微环境开关。最后,我们评估了细胞周期调节剂的治疗潜力,并解决了调节其CAP治疗作用的方法中的挑战和局限性。
摘要:人类 80S 核糖体是负责蛋白质合成的细胞核蛋白纳米机器,在致癌蛋白的癌症转化过程中受到极大影响,并为癌性增殖细胞提供蛋白质和生物质。事实上,癌症与核糖体生物合成增加有关,在核糖体病中发现了几种核糖体蛋白基因的突变,核糖体病是一种先天性疾病,表现出较高的癌症风险。因此,核糖体及其生物合成代表了有吸引力的抗癌靶点,人们正在开发多种策略来识别有效且特异的药物。高三尖杉酯碱 (HHT) 是目前临床上用于癌症治疗的唯一直接核糖体抑制剂,尽管许多经典化疗药物似乎也会影响蛋白质合成。在这里,我们回顾了人类核糖体作为癌症医学靶点的作用,以及功能和结构分析如何与新抑制剂的化学合成相结合产生协同作用。本文还讨论了致癌核糖体可能存在的问题。新兴的观点是,以人类核糖体为靶点不仅可以干扰癌细胞对蛋白质合成的依赖,并可能诱导其死亡,而且可能对降低高周转率的致癌蛋白水平(MYC、MCL1)也大有裨益。低温电子显微镜 (cryo-EM) 是一种先进的方法,可以可视化人类核糖体复合物与因子和结合抑制剂,从而提高我们对它们功能机制模式的理解。低温电子显微镜结构可以极大地帮助新型药物设计策略的基础阶段。一个目标是确定针对癌症核糖体的新特异性和活性分子,例如众所周知的核糖体抑制剂环己酰亚胺的衍生物。
缩写:AAV:腺相关病毒;ABCA1:ATP 结合盒转运蛋白 A1;ACE2:血管紧张素转换酶 2;ANXA1:膜联蛋白 A1;Bcl-2:B 细胞白血病/淋巴瘤 2;Bcl-xL:超大 B 细胞淋巴瘤;BDNF:脑源性神经营养因子;Brn3b:脑特异性同源框/POU 结构域蛋白 3b;C3:C3 胞外酶转移酶;CNV:脉络膜新生血管;CS:皮质类固醇;EAU:实验性自身免疫性葡萄膜炎;ECM:细胞外基质;EIU:内毒素诱导的葡萄膜炎;HLA:人类白细胞抗原;hSyn:人类突触蛋白 1 启动子;IL-1 β:白细胞介素 1 β;IOP:眼压; IRBP:光感受器间类视黄酸结合蛋白;MAC:膜攻击复合物;MAX:MYC 相关蛋白 X;MCP-1:单核细胞趋化蛋白-1;MMP:基质金属蛋白酶;Nabs:中和抗体;NF- κ B:核因子 κ B;NHP:非人类灵长类动物;NIU:非传染性葡萄膜炎;Nrf2:核因子红细胞2相关因子2;Pgk:磷酸甘油激酶;RGC:视网膜神经节细胞;RPE:视网膜色素上皮;scAAV:自互补 AAV;sCD59:可溶性 CD59;SOD2:超氧化物歧化酶 2;Tg-MYOC Y437H:具有肌动蛋白 Y437H 突变的转基因小鼠;TLR:Toll 样受体;TM:小梁网; TrkB:原肌球蛋白相关受体激酶-B;VEGF:血管内皮生长因子
抽象目的:肝癌是与高死亡率和发病率相关的致命恶性肿瘤。不到20%的晚期肝癌患者对单一抗PD-1治疗做出反应。肝癌免疫微环境中嗜中性粒细胞的高异质性可能有助于抵抗免疫检查点阻滞(ICB)。然而,基本机制在很大程度上尚不清楚。方法:我们通过使用转座元素将Oncogenes myc和Kras G12D整合到有条件的TRP53 NULL/NULL小鼠(PTMK/TRP53 - / - )中的肝细胞中的基因组中建立了原位肝癌模型。流式细胞仪和免疫组织化学用于评估肿瘤微环境中免疫细胞的变化。进行过体内共培养测定法,以测试与CD8 + T细胞对肿瘤相关的中性粒细胞(TAN)的抑制作用。通过抗体介导的耗竭来验证中性粒细胞,T细胞和NK细胞的作用。评估了中性粒细胞耗竭和ICB的组合的功效。结果:正性PTMK/TRP53 - / - 小鼠肝肿瘤表现出对抗LY6G治疗的中等反应,而不是PD-1封锁。中性粒细胞的耗竭增加了CD8 + T细胞的浸润,并减少了肿瘤微环境中耗尽的T细胞的数量。 此外,CD8 + T或NK细胞的耗竭消除了抗Ly6G治疗的抗肿瘤功效。 此外,抗LY6G与抗PD-L1的组合增强了细胞毒性CD8 + T细胞的浸润,此后导致肿瘤负担的减少明显更大。中性粒细胞的耗竭增加了CD8 + T细胞的浸润,并减少了肿瘤微环境中耗尽的T细胞的数量。此外,CD8 + T或NK细胞的耗竭消除了抗Ly6G治疗的抗肿瘤功效。此外,抗LY6G与抗PD-L1的组合增强了细胞毒性CD8 + T细胞的浸润,此后导致肿瘤负担的减少明显更大。结论:我们的数据表明,TAN可能有助于肝癌对ICB的抵抗力,并将TAN耗竭与T细胞免疫疗法结合起来协同提高抗肿瘤功效。关键词肝癌;中性粒细胞; PD-1,CD8 + T细胞;精疲力尽
BET BET BROMODOMAIN BRD4和RAC1 ONCEGONES被认为是癌症的重要治疗靶标,并在肿瘤发生,生存和转移中起关键作用。然而,在不同分子亚型的乳腺癌中,包括Luminal-A,HER-A-2阳性和三重阴性乳腺(TNBC)的BRD4-RAC1信号通路的联合抑制作用仍然未知。在这里,我们通过上下文依赖性的方式通过将乳腺癌的不同分子亚型中BRD4-RAC1致癌信号结合在一起,证明了一种新的共同定位策略。我们表明,JQ1(BRD4的抑制剂)和NSC23766(RAC1的抑制剂)的联合治疗可抑制细胞的生长,克隆性潜能,细胞迁移和乳腺干细胞的膨胀,并诱导乳腺癌细胞分子亚型的自噬和细胞衰老。从机械上讲,JQ1/NSC23766联合处理会破坏MYC/G9A轴,随后增强了FTH1以发挥抗肿瘤作用。此外,联合治疗靶标HDAC1/AC-H3K9轴,因此表明该组合在组蛋白修饰和染色质模型中的作用。c-myc消耗和与维生素-C共同治疗使乳腺癌细胞的不同分子亚型敏感到JQ1/NSC23766组合,并进一步降低细胞的生长,细胞迁移和乳腺圈形成。重要的是,使用异种移植小鼠模型在体内抑制乳腺肿瘤的生长。在临床上,RAC1和BRD4表达在乳腺癌患者的样本中呈正相关,并在乳腺癌的不同分子亚型中显示出高表达模式。Rac1和BRD4蛋白都可以预测乳腺癌患者的生存率不佳。综上所述,我们的结果表明,BRD4-RAC1途径的结合抑制作用代表了乳腺癌不同分子亚型的一种新颖而潜在的治疗方法,并突出了通过c-Myc/g9a/g9a/fth1 axis和下降量调节的乳房肿瘤发生在乳腺癌造成乳腺癌中的Rac1-BRD4信号传导的重要性。
摘要 背景 免疫检查点抑制剂 (ICI) 组合疗法代表了一种新兴的癌症治疗策略。然而,它们对微卫星稳定 (MSS) 或错配修复功能良好 (pMMR) 的结直肠癌 (CRC) 的疗效存在差异。本文,我们进行了多组学表征,以确定与 MSS/pMMR CRC 患者对 ICI 组合疗法反应相关的预测性生物标志物,以便进一步开发 ICI 组合疗法。方法 对在临床试验中接受瑞戈非尼联合纳武单抗 (REGONIVO) 或 TAS-116 联合纳武单抗 (TASNIVO) 治疗的 MSS/pMMR CRC 患者的肿瘤进行全外显子组测序、RNA 测序和多重荧光免疫组织化学分析。本研究纳入了来自 REGONIVO 和 TASNIVO 试验的 22 名和 23 名未接受过 ICI 治疗的患者。我们使用来自每项研究的样本进行了生物标志物分析。结果:在 REGONIVO 应答组,上皮间质转化通路和癌症相关成纤维细胞相关基因上调,在 TASNIVO 应答组,G2M 检查点通路上调。在 REGONIVO 无应答组,MYC 通路上调。在 REGONIVO 试验中,共识分子亚型 4 与应答 (p=0.035) 和更长的无进展生存期 (p=0.006) 显著相关。在 REGONIVO 试验应答组中,CD8 + T 细胞、调节性 T 细胞和 M2 巨噬细胞密度显著高于无应答组。在 TASNIVO 试验中,POLE 基因突变与患者应答显著相关;然而,在两项试验中,应答者和无应答者之间其他突变的频率或肿瘤突变负荷均无显著差异。结论:我们鉴定了与 REGONIVO 和 TASNIVO 疗效相关的分子特征,尤其是与肿瘤微环境因素相关的特征。这些发现可能有助于开发预测治疗效果的生物标志物。