鸣谢作者贡献声明 J. Tucker Andrews:写作——审查与编辑、调查、形式分析、数据管理、概念化。 Zijing Zhang:写作——审查与编辑、调查、形式分析、数据管理、概念化、数据管理。 GVR Krishna Prasad:写作——审查与编辑、形式分析。 Fischer Huey:写作——审查与编辑、形式分析、数据管理。 Evgenia V. Nazarova:写作——审查与编辑、形式分析、数据管理。 Jocelyn Wang:写作——审查与编辑、形式分析、数据管理。 Ananya Ranaraja:写作——审查与编辑、数据管理。 Tiffany Weinkopff:写作——审查与编辑、资源。 Lin-Xi Li:写作——审查与编辑、方法论、形式分析。 Shengyu Mu:写作——审查与编辑、方法论。 Michael J. Birrer:写作——审查与编辑、资源。 Stanley Ching-Cheng Huang:写作 - 审阅与编辑,方法论。Nan Zhang:写作 - 审阅与编辑,方法论,概念化。Rafael J. Argüello:写作 - 审阅与编辑,资源,方法论,形式分析。Jennifer A. Philips:写作 - 审阅与编辑,资源,调查,形式分析。Joshua T. Mattila:写作 - 审阅与编辑,资源,资金获取,形式分析,数据管理,概念化。Lu Huang:写作 - 审阅与编辑,写作 - 原始草稿,可视化,监督,资源,项目管理,方法论,调查,资金获取,形式分析,数据管理,概念化。
此外,耐药性在1955年首次在国家一级进行了研究,[2]仍代表着一个重大威胁,耐酸匹配素耐药(RR-TB)的速率(RR-TB)和多种耐药性(MDR-TB)结核病(MDR-TB)的结核病(MDR-TB)的结核病范围为3-4%,从未有过3-4%以前受过治疗的治疗方法,而该治疗的治疗率是以前的18%(以前曾经是不受欢迎的人)。[1]更令人担忧的是,在临床分离株中已经记录了对最近开发的抗菌剂,例如Bedaquiline,[3-6]和Delamanid [3,4,7,8]。对MTB基因组的分析给出了第一个迹象,即脂质和固醇降解[9]具有与其生活方式作为强制病原体的重要功能。[10]已经证明,MTB可以用胆固醇作为唯一的碳源生长[9,11],并且发现其利用是通过一种机制在小鼠中持续存在的细菌所必需的,该机制被认为涉及颠覆IFN -γ-刺激刺激的典型碳源的消耗。[12]参与固醇分解代谢的基因也被鉴定为灵长类动物的毒力决定因素,[13],甚至有人提出MTB具有胆固醇的专业传感器,可介导细菌与宿主细胞膜之间的相互作用。[14]胆固醇通过由MCE4操纵子编码的大型跨膜复合物转运到MTB中。[12,15–17]
耐链霉素(SM)的结核分枝杆菌( M . tuberculosis )是结核病(TB)治疗中关注的焦点,但其具体的耐药机制尚不清楚。本研究主要通过多基因组学的联合分析,对链霉素耐药相关基因进行初步筛选。通过全基因组甲基化、转录组和蛋白质组分析,阐明结核分枝杆菌H37Rv中特定基因与链霉素耐药性的关联。甲基化分析显示,SM耐药组与正常组之间有188个基因存在差异甲基化,其中89个基因为高甲基化,99个基因为低甲基化。功能分析显示,这188个差异甲基化基因富集在74条通路中,多数富集在代谢途径中。转录组分析显示耐药组与正常组之间有516个差异表达基因,其中显著上调和下调的基因分别有263和253个。KEGG分析表明这516个基因富集在79条通路上,大多数基因富集在组氨酸代谢途径,甲基化水平与mRNA丰度呈负相关。蛋白质组分析发现56个差异表达蛋白,其中14个上调,42个下调。此外,通过综合分析获得了3个枢纽基因(coaE、fadE5和mprA)。本研究结果提示,整合的DNA甲基化、转录组和蛋白质组分析可为SM耐药结核分枝杆菌H37Rv的表观遗传学研究提供重要资源。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2023年6月16日。 https://doi.org/10.1101/2023.03.22.533820 doi:Biorxiv Preprint
基于碳的纳米材料(CNM)治疗,尤其是石墨烯 - 氧化物(GO)已经显示出对分枝杆菌的有希望的活性(De Maio等,2019)。即使GO没有显示直接的杀菌活性,它也能够将分枝杆菌置于网中,从而干扰正常的巨噬细胞感染(De Maio等,2019)。此外,由于活性氧(ROS)产生的增加,二线抗TB药物LineZolid的共同给药导致了协同的抗MTB效应(De Maio等人,2020年)。然而,GO板与异念珠菌或amikacin的相互作用干扰并阻碍了抗生素活性(De Maio等,2020)。此外,当基于外周血单核细胞的MTB感染模型中使用GO时,我们观察到控制分枝杆菌复制的失败,这在很大程度上是由于抗单核细胞和CD4 T细胞的毒性(Salustri et al。,2023)。
全球结核病报告2023。(世界卫生组织,日内瓦,2023年); Butler,M。S。等。对具有新作用模式的抗菌候选者的审查。ACS感染。dis。10,3440–3474(2024); Gavalda,S。等。PKS13/FADD32串扰结核分枝杆菌中霉菌酸的生物合成。生物学杂志284,19255–19264(2009); Galandrin,S。等。用于鉴定分枝杆菌FADD32活性抑制剂的测定开发。SLAS Discovery 18,576–587(2013); Le,N.-H。等。针对分枝杆菌脂肪酰基 - A酰基 - AM-AMP连接酶FAAL32的药物筛查方法更新了Salicylanilide药物团在抗结结核病中的兴趣。生物有机和药物化学71,116938(2022)。
结果:基于临床数据的模型包含年龄,性别和IL-6,而RandomForest算法则达到了最佳学习模型。确定了CT图像的两个关键放射线特征,然后用于建立放射线模型,发现Logistic算法的模型是最佳的。多模型模型包含年龄,IL-6和2个放射线特征,最佳模型来自LightGBM算法。与最佳的临床或放射线学模型相比,最佳的多模型模型具有最高的AUC值,准确性,灵敏度和负预测值,并且在外部测试数据集中还验证了其“优惠性能”(准确性= 0.745,敏感性= 0.900)。此外,多模型模型的性能优于放射科医生,NGS检测和现有机器学习模型的性能,其精度分别为26%,4和6%。
摘要:结核病是一种具有高发病率和死亡率的疾病。由于与当前疗法有关的问题,开发新药进行治疗是必要和迫切的。二氢叶酸还原酶(DHFR)是多种药物作用的公认靶标。与人DHFR(H DHFR)相比,结核分枝杆菌DHFR(MT DHFR)DHFR(MT DHFR)的3D结构阐明了配体特异性的主要氨基酸残基和结构基础。本文旨在就过去二十年来开发的新MT DHFR抑制剂提供有关最先进的观点。这项研究表明,功效与特定组的存在之间的相关性,例如与酶活性位点结合的二氨基吡啶环与经典DHFR抑制剂甲氨蝶呤的结合的相似性。在此,还报道了最近开发分子非传统核心的努力,这可能更有选择性和有效地抵抗结核病。
摘要我们分析了迄今为止收集的结核分枝杆菌复合物(MTBC)的最多样化基因组数据集的泛基因组和基因含量调节。MTBC的封闭泛基因组的特征是辅助和特异性基因组的降低,与其克隆性质兼容。然而,随着MTBC基因组的系统发育距离的增加,共享基因家族大大少得多。这种效应仅在种间比较中观察到,而不是SPE内部的CIE,这表明物种特异性的生态特征与基因含量的变化有关。基因丢失是由于基因组缺失和伪源性元素引起的,可驱动基因含量的变异。MTBC物种和谱系之间的这种基因侵蚀也有所不同,即使在结核分枝杆菌中,L2的基因损失比L4更大。我们还表明,系统发育近端并不总是与MTBC中基因含量相关性的良好替代性,因为MyCobacte Rium Africanum L6的基因曲目偏离了其预期的系统发育生物的保守主义。以伪元注释代表的毒力因子的基因破坏大多不是保守的,是MTBC生态型的预测因素。每个MTBC生态型都具有自己的附件基因组,可能受宿主和地理等不同选择压力的影响。重要的是研究基因丧失如何赋予MTBC菌株的新适应性特征。检测到的异质基因损失在阐明负责MTBC中观察到的各种表型的遗传因素方面构成了重大挑战。通过详细介绍特定的基因损失,我们的研究是研究MTBC表型及其免疫逃避策略的研究人员的资源。
科学和C服务细菌疾病 - 人类的传染病,科学疾病,朱丽叶·维特斯曼斯特拉特(Juliette wytsmanttrat),布鲁塞尔(Brussels),1050年,比利时B国家转诊和结核病的国家转诊,科学人,朱丽叶(Socientan),朱丽叶(Socient)里尔,CNRS,Inserm,Institute Pasteur de Lille,U1019 -UMR 9017-中心 - 里尔,里尔,59000,59000,法国D大学感染和免疫中心。里尔,CNRS,Inserm,Chu Lille,Institut Pasteur de Lille,US 41- UMS 2014 -PLBS,Lille,59000,法国E,MIT和哈佛大学,Main Street,Main Street 415,Cambridge,Cambridge,MA,MA,MA,02142,美国,美国,美国,MASSACHUSETS 4121142142 for Interventional Studies, Scienti fi c Direction Infectious Diseases in Humans, Sciensano, Rue Juliette Wytsmanstraat 14, Brussels, 1050, Belgium h Department of Molecular Biology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA i Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsbaan 212, Antwerp, 2610, Belgium j Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, 75015, France k Division of Molecular Biology and Human Genetics, SAMRC Centre for Tuberculosis Research, DST/NRF生物医学结核病卓越中心研究,医学和健康科学学院,斯特伦博斯大学,泰格伯格,泰格伯格,7505,南非,l Sciensano,Sciensano,Sciensano,Juliette wytsmanttsmantsmanttraat 14,Brusstrait,Brussirenty,Belgium Mycobciiguim Mycobci,Mycobcii,Mycobcii,热带医学研究所,国家埃斯特拉特(Nationalestraat)155,安特卫普(Antwerp),2000年,比利时n分枝杆菌培养物收集比利时比利时比利时协调的微生物藏品,《国家埃斯特拉特155》,安特卫普,2000年,比利时,比利时