疫苗制造商正在竞相开发 COVID-19 疫苗,并已将十种候选疫苗推进到临床试验阶段。然而,疫苗开发通常是一个漫长的过程。人们还探索了许多免疫反应调节剂在 COVID-19 管理中的功效。在这篇简短的文章中,我们探讨了使用印度分枝杆菌 (MIP) 治疗重症 COVID-19 患者的可能性,以及它在缓解轻度感染患者严重疾病方面的可能作用。MIP 疫苗已被证明可在麻风病患者、II 类结核病患者以及严重败血症和低 CD4 计数患者的家庭接触者中预防麻风病。它还被用作膀胱癌患者的免疫反应调节剂。值得注意的是,这种疫苗可能比 BCG 疫苗更有效。本文介绍了使用此类药物的可能益处和风险。这种方法可能对资源贫乏的国家以及结核病和麻风病等疾病流行的国家有益。
鸟分枝杆菌复合物(MAC)的生物在环境中无处不在。1-6在当前的时代中,鸟杆菌是> 95%的HIV患者的病因学剂,患有先进的免疫抑制,他们获得了传播的MAC疾病。4,7-12较新的细菌打字技术表明,艾滋病毒患者引起菌血症的生物是多种物种,包括M. avium subspecies hominissuis和M. colombiense和其他非MAC物种,包括GENAVENSE,M. gENAVENSE,M。KANSASASII,M。KANSASII,M。SIMIAE,M。SIMIAE,M。MYCEGENICUM和MYCEGENICUM等。13-16这些包括历史上所谓的传播Mac。估计有7%至12%的艾滋病毒成年人先前已感染了MAC,尽管疾病率在不同的地理位置有所不同。尤其是2,4,8,11,12,在美国和欧洲,与资源有限的环境相比,艾滋病毒患者的传播MAC在美国和欧洲的描述频率更高。17
引言世界卫生组织 (WHO) 估计,2023 年全球将有 1080 万人患上结核病 (TB),120 万人死于该疾病 [1]。药物敏感 (DS) 结核病需要 4 至 6 个月的标准化联合疗法 [2]。对于对利福平和异烟肼产生耐药性的结核病(定义为耐多药 (MDR) 结核病)或单独对利福平产生耐药性的结核病(RR-TB),目前建议大多数患者采用 6 个月的二线抗结核药物联合疗法 [3,4]。无论结核分枝杆菌是否对药物产生耐药性,都应监测治疗效果,以确保充分的治疗反应,并评估患者对接触者的传染性 [5,6]。
儿童白血病发病率(LI)的预防变量仍然未知。过去的断言,由于缺乏统一的框架来解释不同研究中的可变结果,因此可能具有潜在保护性的儿童疫苗接种,尤其是BCG的潜在保护性。对2020年欧洲地区的幼儿li的检查,据称具有相似的基础混杂因素,但儿童疫苗接种覆盖范围差异显示出负面的协方差,而普遍存在的分枝杆菌。在BCG接种疫苗的儿童中暴露。在0 - 4岁的人群中,儿童期BCG疫苗接种覆盖率> 90%的人群与盛行的结核蛋白免疫反应性持不同关系[r(24):-0.7868,p值:<0.0001]。在没有BCG疫苗的情况下,LI在0 - 4岁的人群中没有这种相关性,尽管MCV2,PCV3和DTP3疫苗接种的可用数据暗示了弱关联。我们假设幼儿期BCG疫苗接种“启动”和随后的“训练的免疫力”通过从分枝杆菌中提升来增强。暴露在儿童时期起着预防和保护作用。不考虑盛行的“受过训练的免疫力”可能是过去研究中造成的结局结果的原因。探索性研究优选在高负担国家进行,并控制受过训练的免疫相关性和其他潜在的混杂因素,并有助于确定LI的早期免疫训练(或缺乏)。
据报道,鸟分枝杆菌 (Mav) 复合群越来越多地导致免疫系统受损个体发生非结核性感染。治疗复杂且没有疫苗可用。先前的研究表明,使用转基因结核分枝杆菌 (Msm) 作为结核病疫苗载体具有一定的潜力,因为它无致病性,因此免疫功能低下个体可以耐受。在本研究中,我们使用了破坏 EspG 3 (ESX-3 分泌系统的一个组成部分)的 Msm 突变株。与感染野生型 Msm 的细胞相比,感染 Msm 1 espG 3 的巨噬细胞和树突状细胞显示抗原呈递增加。给小鼠接种表达 Mav 抗原 MPT64 的 Msm 1 espG 3 疫苗,可与结核病疫苗牛分枝杆菌 BCG 一样,提供针对 Mav 感染的同等保护。然而,在受到 Mav 攻击后,我们观察到在接种 Msm 1 espG 3 :: mpt64 的小鼠中,产生 IL-17 的 CD4 +(Th17 细胞)和 CD8 +(Tc17 细胞)T 细胞的频率很高,而在接种 BCG 的小鼠中则没有看到。从接种 Msm 1 espG 3 的小鼠过继转移细胞表明,来自 T 细胞区室的细胞有助于防止 Mav 感染。进一步的实验表明,富含 Tc17 的 T 细胞并不能提供针对后续 Mav 感染的预防性保护,但是当将富含 Tc17 的细胞转移到已经感染 Mav 的小鼠身上时,观察到了治疗效果。这些初步发现很重要,因为它们表明 Tc17 细胞在分枝杆菌感染中具有以前未知的作用。总之,Msm 1 espG 3 有望成为针对 Mav 以及其他可能 (myco) 细菌感染的疫苗载体。
引言世界卫生组织 (WHO) 估计,2023 年全球将有 1080 万人患上结核病 (TB),120 万人死于该疾病 [1]。药物敏感 (DS) 结核病需要 4 至 6 个月的标准化联合疗法 [2]。对于对利福平和异烟肼产生耐药性的结核病(定义为耐多药 (MDR) 结核病)或单独对利福平耐药的结核病(RR-TB),目前建议大多数受影响患者采用 6 个月的二线抗结核药物联合疗法 [3,4]。无论结核分枝杆菌是否对药物产生耐药性,都应对治疗效果进行监测以确保充分的治疗反应,并评估患者对接触者的传染性 [5,6]。
肺部和北美的肺化分枝杆菌(NTM)的患病率正在增加。大多数肺NTM是由鸟分枝杆菌(MAC)引起的。肺MAC的治疗是次优的,失败率范围从30%到40%,需要开发新的疫苗。在这项研究中,我们测试了两种全细胞疫苗,DAR-901(HEAD杀死M. Obuense)和BCG(Live Pive nive nive s. Bovis),通过首先对Balb/C小鼠进行免疫接种,然后进行过夜刺激过夜刺激,从而诱导MAC交叉反应免疫。研究这些疫苗预防MAC感染的能力,BALB/C小鼠以DAR-901(皮内)或BCG(皮下或鼻内内)接种疫苗,并在4周后用雾化的MAC挑战。一些通过饲料用克拉霉素治疗了接受BCG接种的小鼠。感染后4周对免疫小鼠和未接种疫苗的对照进行肺CFU。 Our results showed that i) DAR-901 induced cross-reactive immunity to MAC and the level of MAC cross-reactive immunity was similar to the level of immunity induced by BCG, ii) DAR-901 and BCG protect against aerosol MAC, iii) mucosal BCG vaccination provided the best protection against MAC challenge, and iv) BCG vaccination did not interfere with anti-MAC activities of克拉霉素。肺CFU。Our results showed that i) DAR-901 induced cross-reactive immunity to MAC and the level of MAC cross-reactive immunity was similar to the level of immunity induced by BCG, ii) DAR-901 and BCG protect against aerosol MAC, iii) mucosal BCG vaccination provided the best protection against MAC challenge, and iv) BCG vaccination did not interfere with anti-MAC activities of克拉霉素。
这项研究涉及传输(TR)(TR)(PubChem CID:90659753)的体内和体内抗TB效力和体内安全性 - 被确定为源自链霉菌SP(R2)的新型次生代谢物。tr对抗药性结核病临床分离株进行了体外测试(n = 49)。94%的Dr -TB菌株(n = 49)在10μgml-1下抑制了TR。体内安全性和功效研究表明,TR的0.005mg -kg -1对小鼠,大鼠和豚鼠有毒,而0.001mg kg -1是安全的,感染负荷并没有减少。tr是一种有效的DNA介导剂,也靶向分枝杆菌的RECA和蛋氨酸氨基肽酶。TR的类似物47是使用基于硅胶的分子解毒方法和SAR分析设计的。TR的多重靶向性质使TR的类似物的机会变亮了,即使亲本化合物有毒,TR的类似物的机会也是有效的TB治疗分子。TR的类似物47被认为具有非DNA插入性质,并且具有高功能效力的体内毒性。 这项研究试图从微生物来源开发一种新型的抗TB分子。 尽管父母化合物有毒,但其类似物的设计旨在通过塞里科(Silico)的方法安全。 但是,在将其标记为有希望的抗TB分子之前,需要对此主张进行进一步的实验室验证。TR的类似物47被认为具有非DNA插入性质,并且具有高功能效力的体内毒性。这项研究试图从微生物来源开发一种新型的抗TB分子。尽管父母化合物有毒,但其类似物的设计旨在通过塞里科(Silico)的方法安全。但是,在将其标记为有希望的抗TB分子之前,需要对此主张进行进一步的实验室验证。
摘要:在减轻人类病原体伤害的最新努力中,许多生物合成途径已被广泛评估,以抑制病原体生长和确定药物靶标的能力。这种途径的重要产物/靶标之一是等二磷酸。异戊烯基双磷酸是类异型的通用前体,这对于微生物的正常功能至关重要。通常,两种生物合成途径导致异端二磷酸盐的形成:(1)动物中的甲丙酸途径; (2)许多细菌中的非甲酸盐或甲基疫霉素(MEP)以及一些原生动物和植物。由于在哺乳动物细胞中找不到MEP途径,因此它被认为是针对各种人类病原体(包括结核分枝杆菌(M.TB))开发抗菌剂的有吸引力的靶标。在MEP途径中,4-二磷酸2-C-C-甲基-D-雄性激酶(ISPE)磷酸化4-二羟基丁基-2-C-C-甲基-D-鞭毛醇(CDPME)以形成4-二羟基tididyl- 2-甲基 - 2-甲基 - 2-甲基 - 二甲基2-哲学2-磷酸2-磷酸盐(CDP)。通过对接ISPE蛋白进行了针对1500万种化合物的虚拟高通量筛选。我们鉴定出一种活性异位化合物,该化合物显示出酶促活性。也就是说,针对M.TB ISPE的6 µg/ml的IC 50和M.TB(H37RV)的MIC为12 µg/ml。因此,我们设计和合成了类似的新型异构菌化化合物,并将它们针对分枝杆菌进行了测试,观察到5 µg/ml的MIC针对M. Avium。这项研究将为开发针对病原体中MEP途径的新型抗菌剂提供必要的关键见解。