背景:糖尿病引起的心脏纤维化是糖尿病心肌病的主要机制之一。作为一种常见的His-甲基甲基转移酶,Zeste同源2(EZH2)的增强子与多个器官的纤维化进展有关。但是,尚未阐明EZH2在糖尿病心肌纤维化中的机制。方法:在当前的研究中,建立了大鼠和小鼠糖尿病模型,通过超声心动图评估了大鼠和小鼠的左心室功能,并通过Masson染色评估了大鼠心室的纤维化。原发性大鼠心室纤维爆炸在体外培养并用高葡萄糖(Hg)刺激。分析了组蛋白H3赖氨酸27(H3K27)三甲基 - EZH2和心肌纤维化蛋白的表达。结果:在STZ诱导的糖尿病性心室组织和HG诱导的原发性心室成纤维细胞体外,H3K27三甲基蛋白增加增加,EZH2的磷酸化降低。用GSK126抑制EZH2,抑制了心脏成纤维细胞的激活,分化和迁移,以及Hg诱导的纤维化蛋白的过表达。 机械研究表明,HG通过失活AMP激活的蛋白激酶(AMPK)在THR311上的磷酸化降低,该蛋白激酶(AMPK)在转录上抑制过氧化物酶体增殖物激活的受体γ(PPAR-γ)的表达以促进Fi-Brablasts激活和分化。 结论:我们的数据显示AMPK/EZH2/PPAR-γ信号途径与HG诱导的心脏纤维化有关。用GSK126抑制EZH2,抑制了心脏成纤维细胞的激活,分化和迁移,以及Hg诱导的纤维化蛋白的过表达。机械研究表明,HG通过失活AMP激活的蛋白激酶(AMPK)在THR311上的磷酸化降低,该蛋白激酶(AMPK)在转录上抑制过氧化物酶体增殖物激活的受体γ(PPAR-γ)的表达以促进Fi-Brablasts激活和分化。结论:我们的数据显示AMPK/EZH2/PPAR-γ信号途径与HG诱导的心脏纤维化有关。
如果临床付款和编码政策与会员有权享受承保服务的任何计划文件之间发生冲突,则以计划文件为准。如果 CPCP 与任何提供商合同(提供商根据该合同参与和/或向符合条件的会员和/或计划提供承保服务)之间发生冲突,则以提供商合同为准。“计划文件”包括但不限于医疗保健福利证书、福利手册、计划摘要说明和其他承保文件。新墨西哥州蓝十字蓝盾可以合理地自行解释和应用本政策,以将其应用于特定情况下提供的服务。BCBSNM 在任何适用计划文件规定的范围内对其解释和应用拥有完全和最终的自由裁量权。
衰竭,房颤,传导疾病和类风湿关节炎。全基因组关联分析确定了11个与T1时间相关的独立基因座。与葡萄糖转运(SLC2A12),铁稳态(HFE,TMPRSS6),组织修复(ADAMTSL1,VEGFC),氧化应激(SOD2),心脏肥大(MYH7B)和钙信号(Camkk2D)相关的鉴定的基因座与葡萄糖相关的基因相关的基因。使用TGFβ1介导的心脏成纤维细胞激活测定法,我们发现11个基因座中有9个包含表达和/或开放式染色质构象的时间变化,这些基因支持其生物学与肌纤维纤维细胞的生物学相关性。通过利用机器学习,使用心脏成像对心肌间质性纤维化进行大规模定量,我们验证心脏纤维化和疾病之间的关联,并确定纤维化潜在的新型生物学相关途径。
心力衰竭以及慢性肾脏疾病钠 - 葡萄糖共转运蛋白2(SGLT2)抑制剂已改变了医疗疗法的景观。最初用于糖尿病的开发,一种不可预见的心血管益处扩展了SGLT2抑制剂,可从抗高血糖剂中使用对心血管和肾脏风险修饰剂的使用。作为他们在心血管疾病中的好处,与糖尿病状态以及左心室射血分数无关,它是整个心力衰竭范围中推荐的唯一治疗类别。直到最近,证据的剩余差距一直是关于SGLT2抑制剂在急性心肌梗塞(MI)患者中作为迄今为止SGLT2抑制剂的前试验的安全性和功效的数据,排除了最近缺血性事件的患者。作为MI SGLT2抑制剂治疗的三项试验中的第一个发表了Emmy试验。艾米(Div>)随机分组的476例患者。在26周内N末端脑脑发作肽(NT-Probnp)以及功能性和结构次要终点的变化的主要终点。这提供了SGLT2抑制剂介导的有益结果的第一个证据。我们在这里讨论了两项即将进行的结果试验(DAPA-MI和EMPACT-MI),就MI早期后这种药物的未来作用而言。
抽象目标是探索没有阻塞动脉的心肌缺血的人的生活经历。使用半结构化访谈设计定性研究。与居住在英国的17名参与者进行电话访谈。参与者有17人(21名男性,15名女性; 31-69岁),假定或确认的心肌缺血诊断为没有阻塞性动脉,通过社交媒体和在线患者主导的支持论坛招募。结果产生了五个主题。主题1描述了参与者描述的广泛经验,尤其是症状的频率和强度,以及症状通常引起的不确定性和恐惧。主题2描述了对社会关系,就业和日常生活其他方面的主要影响。主题3说明了参与者围绕诊断和获得医疗支持的途径的挑战和创伤经历。主题4强调了参与者在治疗和管理方面面临的缺乏共识和明确性。主题5描述了参与者重视的应对和支持策略。结论本研究提供了对没有阻塞动脉的心肌缺血的挑战的见解。发现突出了对患有这些疾病的人们的重大心理影响,以及需要改善诊断,支持和长期管理。
Tei等人首先提出了心肌性能指数(MPI)。是评估患有扩张心肌病的患者心脏功能的一种手段。从多普勒衍生的MPI显示出潜在的潜力作为全局心肌功能的非侵入性度量。最大压力指数(MPI)是通过从总等光量表收缩和松弛时间(分别为ICT和IRT)中减去弹出时间(ET)获得的。Tsutsumi等。 是第一个注意到MPI可以用来评估胎儿心脏的整体功能。 MPI已被其他研究人员提出,作为预测涉及生长限制胎儿的复杂妊娠,糖尿病母亲的胎儿,心力衰竭(包括胎儿的胎儿(包括水力发质胎儿)和RH敏感性的胎儿)的潜在有用工具。 相反,左胎儿心脏评估的参考MPI值在已发表的文献中广泛范围。 通常,通常的参考值之间的很大差异是由于用来计算时间周期的多普勒波形缺乏区分特征引起的。 为了避免这个问题,其他作者提出了不同的选择。 由Hernandez-Andrade等人开发的Mod-MPI是对心肌性能指数的改编。 与原始MPI相比,通过此调整可以看到改进的一致性和较低的变化,该调整基于主动脉瓣和二尖瓣的多普勒回声。Tsutsumi等。是第一个注意到MPI可以用来评估胎儿心脏的整体功能。MPI已被其他研究人员提出,作为预测涉及生长限制胎儿的复杂妊娠,糖尿病母亲的胎儿,心力衰竭(包括胎儿的胎儿(包括水力发质胎儿)和RH敏感性的胎儿)的潜在有用工具。相反,左胎儿心脏评估的参考MPI值在已发表的文献中广泛范围。通常,通常的参考值之间的很大差异是由于用来计算时间周期的多普勒波形缺乏区分特征引起的。为了避免这个问题,其他作者提出了不同的选择。由Hernandez-Andrade等人开发的Mod-MPI是对心肌性能指数的改编。改进的一致性和较低的变化,该调整基于主动脉瓣和二尖瓣的多普勒回声。由于其在文献中的新增加,MOD-MPI尚未用于评估与妊娠相关并发症相关的胎儿心脏功能。
炎症有助于心脏病的发病机理,并代表了心力衰竭的可行治疗靶点。心脏损伤引起中性粒细胞,单核细胞和T细胞的募集。单核细胞及其后代表示高度丰富,表现出令人难以置信的功能多样性,并且是心肌炎症的关键决定因素。关于指导单核命运决策的机制和信号事件还有很多尚待学习。,我们使用CCR2 CRERT2 ROSA2 LSL-TDDOMATO小鼠设计了一种遗传谱系追踪策略,并结合了单细胞RNA的顺序,以绘制单核细胞的命运和分化轨迹,这些单核细胞的命运和分化轨迹在抑制心脏后渗入心脏后,后者渗透了心脏梗死(MI)。我们观察到单核细胞募集仅限于MI后的前5天。浸润单核细胞产生转录不同的和空间限制的巨噬细胞和树突状细胞样子集,随着时间的流逝动态转移,并且在心肌内长期持续存在。伪分析分析预测了最初将单核细胞衍生的巨噬细胞的两个分化轨迹分别分配到边界和梗塞区域。在这些轨迹中,我们表明表达I型IFN响应签名的巨噬细胞是位于边界区域内的中间人群并促进心肌保护。共同发现了梗塞心脏中单核细胞分化的新复杂性,并表明调节单核细胞命运决策可能具有临床意义。
心脏病是糖尿病患者发病和死亡的主要原因,主要是由于与心肌梗死 (MI) 等缺血性损伤相关的风险。我们使用人类群体遗传数据来证明目前的高血糖生物标志物不能解释糖尿病患者心肌梗死后死亡的风险。因此,本研究系统地评估了糖尿病心血管风险背后的血糖应激。使用体内和体外模型,我们证明血糖变异性(而非单独的高血糖)是糖尿病心肌功能障碍和心肌损伤敏感性的主要风险因素。这些发现为机制和药物发现研究提供了新的临床前模型,并为管理糖尿病患者心血管结果的策略提供了信息。
简介:线粒体是心脏的中央能量发生器,通过氧化磷酸化 (OXPHOS) 系统产生三磷酸腺苷 (ATP)。然而,线粒体还指导关键细胞决策和对环境压力源的反应。方法:本研究评估了长期电磁压力是否会影响线粒体 OXPHOS 系统和心肌的结构改变。为了诱发长期电磁压力,小鼠暴露于 915 MHz 电磁场 (EMF) 28 天。结果:对暴露于 EMF 的小鼠的线粒体 OXPHOS 容量的分析表明,复合物 I、II、III 和 IV 亚基的心脏蛋白表达显著增加,而 ATP 合酶 (复合物 V) 的 α 亚基的表达水平在各组之间保持稳定。此外,使用 Seahorse XF24 分析仪测量分离的心脏线粒体的呼吸功能表明,长时间的电磁应力会改变线粒体的呼吸能力。然而,与对照组相比,暴露于 EMF 的小鼠血浆中丙二醛(氧化应激指标)的水平和心肌线粒体驻留抗氧化酶超氧化物歧化酶 2 的表达保持不变。在左心室的结构和功能状态下,在受到电磁应力的小鼠的心脏中未发现任何异常。讨论:总之,这些数据表明长时间暴露于 EMF 可能通过调节心脏 OXPHOS 系统影响线粒体的氧化代谢。
1林申大学科学技术研究生院农业部,8304 Minami-Minowa,Kami-Ina,Nagano,Nagano 399-4598,日本; 19as101k@shinshu-u.ac.jp(M.I.); shimot@shinshu-u.ac.jp(T.S.)2个蜂窝和分子生物技术研究所,美国国家先进工业科学技术研究所,中部5-41,1-1-1 Higashi,Tsukuba,Tsukuba 305-8565,日本伊巴拉基; y-nihashi@aist.go.jp 3 Shizuoka大学药学学院分子医学系,日本Shizuoka 422-8526,Suruga-Ku 52-1 Yada,52-1 Yada; y.sunagawa@u-shizuoka-ken.ac.jp(y.s.); morimoto@u-shizuoka-ken.ac.jp(t.m。)4农业学院农业和生命科学系,新月大学,8304 Minami-Minowa,Kami-Ina,Nagano,Nagano 399-4598,日本; koume@shinshu-u.ac.jp(k.u. ); kagami@shinshu-u.ac.jp(H.K.) 5生物医学科学研究所生物分子创新系,新月大学8304 Minami-Minowa,Kami-Ina,Nagano,Nagano 399-4598,日本 *通信:4农业学院农业和生命科学系,新月大学,8304 Minami-Minowa,Kami-Ina,Nagano,Nagano 399-4598,日本; koume@shinshu-u.ac.jp(k.u.); kagami@shinshu-u.ac.jp(H.K.)5生物医学科学研究所生物分子创新系,新月大学8304 Minami-Minowa,Kami-Ina,Nagano,Nagano 399-4598,日本 *通信: