硫氧还蛋白还原酶(TRXR)是含硒的吡啶核苷酸 - 二硫键氧化酶,以及与维持细胞氧化还原稳态有关的抗氧化剂硫氧还蛋白系统的一部分。1-3局部位于细胞质的TRXR:TRXR1的三种同工型,TRXR2和TRXR3位于线粒体。4所有TRXR同工型都催化了NADPH依赖性的氧化TRX和其他氧化蛋白二硫化物底物的还原,以及硒酸盐脂质氢过氧化物,维生素K和过氧化氢。1,2,4-7 TRXRS调节了几种氧化还原敏感的生物学过程,包括凋亡和细胞生长,增殖和生存,并与癌症,神经退行性疾病,慢性炎症性疾病,自身免疫性疾病和寄生虫的病理有关。4,8-10
用心肌细胞特异性FOXO1缺失在人类细胞和糖尿病小鼠中进行分析表明,FOXO1直接绑定在KLF5启动子上,并增加了KLF5的表达。具有心肌细胞特异性FOXO1缺失的糖尿病小鼠的心脏KLF5表达较低,并受到DBCM的保护。遗传学,药理增益和KLF5功能方法的丧失和小鼠AAV介导的KLF5递送表明KLF5诱导了DBCM。因此,当救出KLF5表达时,消除了心肌细胞FOXO1在DBCM中的保护作用。同样,组成型心肌细胞特异性KLF5过表达引起心脏功能障碍。klf5通过直接结合NADPH氧化酶(NOX)4启动子和NOX4表达诱导引起氧化应激。这伴随着心脏神经酰胺的积累。药理学或遗传KLF5抑制减轻了超氧化物的形成,可防止神经酰胺的积累和改善糖尿病小鼠的心脏功能。
应激会导致细胞损伤,例如对DNA,蛋白质和脂质膜的损伤[3]。烟酰胺腺苷二核苷酸磷酸(NADPH)氧化酶(NOX)是一种与膜相关的连接络合物,它使用NADPH作为电子供体来催化单电子还原氧的减少[4]。NOX被视为糖尿病中葡萄糖诱导的ROS形成的主要来源[5]。髓过氧化物酶(MPO)是过氧化物酶亚科的成员,它催化了过氧化氢和氯离子之间的反应,从而产生次醛酸,这是中性粒细胞产生的最强大的杀菌氧化剂[6]。在一项研究中,在患有和没有心血管疾病症状的T2D患者中发现血浆MPO活性显着增强[7]。该观察结果表明,血液中的MPO活性升高可能是T2D患者氧化应激和心血管风险的附加标志。自由基的氧化活性的表现可以通过测量生物系统中的氧化产率来获得[8]。因此,脂质过氧是氧化应激的最有用的生物标志物。丙二醛(MDA)是脂质过氧化的最终产物之一,最终在氧化条件下血浆增加[9]。总氧气应激(TOS)通常用于估计体内的整体氧化态。因此,较高水平的ROS会导致脂质,氨基酸,植物和蛋白质的过氧化,并产生羟氧化物的产生[10]。中性粒细胞与淋巴细胞比(NLR)也反映了氧化应激的存在[14]。先前的研究报告说,通过测量氢过氧化物的水平,T1D [11]和T2D患者的氧化应激增加。已经表明,即使在正常范围内,升高的白血细胞(WBC)计数也与T2D中的宏观和微血管并发症都相关[13]。因此,本研究的目标是评估与对照组相比,糖尿病患者的某些氧化应激标志物(例如NOX和MPO,MDA和TOS)以及细胞炎性生物标志物。希望这些发现能够改善对T2D中氧化应激和炎症的复杂病理生理学的理解。
代谢会产生氧自由基,从而导致致癌突变。激活的致癌基因和肿瘤抑制因子的丧失反过来会改变代谢并诱导有氧糖酵解。有氧糖酵解或瓦博格效应将高葡萄糖发酵率与癌症联系起来。葡萄糖与谷氨酰胺一起通过糖酵解提供碳骨架、NADPH 和 ATP 来构建新的癌细胞,这些癌细胞在缺氧条件下持续存在,进而重新连接代谢途径以促进细胞生长和存活。过量卡路里摄入与癌症风险增加有关,而卡路里限制则具有保护作用,可能通过清除线粒体或线粒体自噬,从而减少氧化应激。因此,代谢与癌症之间的联系是多方面的,从大型哺乳动物中癌症发病率低、比代谢率低到因酶或癌症基因突变导致癌细胞代谢改变。
摘要 据报道,抑制 NADPH 氧化酶 4 (NOX4) 可减轻糖尿病引起的 β 细胞功能障碍并提高体外存活率,以及抵消高脂饮食引起的小鼠葡萄糖不耐受。我们研究了选择性 NOX4 抑制剂 GLX7013159 在移植了人类胰岛的无胸腺糖尿病小鼠体内 4 周的抗糖尿病作用。在整个治疗期间,接受 GLX7013159 治疗的小鼠的血糖和水消耗量均降低。此外,GLX7013159 治疗可改善胰岛素和 c 肽水平,提高胰岛素分泌能力,并大大降低胰岛素阳性人类细胞的凋亡率(以胰岛素和裂解的 caspase-3 的共定位来衡量)。我们得出结论,GLX7013159 抑制 NOX4 的抗糖尿病作用在体内长期研究期间也得到观察到,这可能是由于人类 β 细胞存活率和功能的提高。
抗生素丝裂霉素是烷基化剂组的细胞抑制药物。丝裂霉素是一种从链霉菌中分离出具有抗塑性作用的抗生素。它以非活动形式存在。激活三官能烷基化剂是快速的,在生理pH下在血清中存在NADPH的情况下或细胞内几乎在体内的所有细胞中,除了大脑外,由于有丝霉素无法克服血脑屏障。3烷基自由基全部源自喹酮,氮杂氨酸和氨基甲酸酯基。作用机理主要基于DNA的烷基化(RNA的程度较小),并具有相应的DNA合成抑制作用。DNA损伤的程度与临床效应相关,并且在抗性细胞中比敏感细胞低。与其他烷基化剂一样,增殖细胞比在细胞周期的静止阶段(GO)的损害更大程度。此外,释放自由过氧化物自由基,特别是在较高剂量的情况下,导致DNA断裂。过氧化物自由基的释放与副作用的器官特异性模式有关。
二硫代普及病是一种病理过程,在表达高水平SLC7A11的细胞中NADPH缺乏和过量的二硫键条件下发生。此过程是由葡萄糖剥夺引起的二硫应激引起的,并首先由癌症研究人员描述。氧化应激是中枢神经系统(CNS)的一种假设的机制,而二硫应激是一种特定的氧化应激类型。蛋白质与二硫化二硫酸二硫酸二硫酸菌和代谢途径有关的蛋白质与CNS疾病(神经退行性疾病,神经瘤和缺血性中风)显着相关。但是,负责此相关性的具体机制仍然未知。本综述概述了有关二硫代菌病发病机理的原始元素,遗传因素和信号蛋白的当前知识。它表明,硫代代谢和二硫应激的破坏在中枢神经系统疾病中起着关键作用,这与二硫代基因的潜在作用有关。我们还总结了与二硫酸二硫代菌有关的药物,并突出了治疗中枢神经系统疾病的潜在治疗策略。此外,本文提出了可检验的假设,这可能是治疗中枢神经系统疾病的有希望的靶标。
细胞在敌对或营养不足的环境中生存的主要挑战之一,例如肿瘤微环境,是由代谢失衡或快速增殖引起的活性氧(ROS)缓冲活性氧(ROS)。过多的ROS的细胞需要产生保护性分子,例如谷胱甘肽,以减轻破坏性作用。谷胱甘肽的产生需要半胱氨酸,通常通过SLC7A11胱氨酸 - 谷氨酸抗虫剂从细胞外环境中吸收氧化二聚体形式,胱氨酸。如果胱氨酸的摄取被阻断,细胞会经历铁毒性,这是由磷脂过氧化引起的铁依赖性死亡,尤其是多不饱和脂肪酸(PUFA),导致质膜膜中的广泛异常。铁凋亡通过白介素释放(IL-1和IL-18)激活免疫系统,并与炎症性疾病和伤害有关(1次审查1)。为了避免铁铁作用,许多癌症上调了SLC7A11,并进口大量胱氨酸以进行有效的谷胱甘肽生产。然而,这还需要准备好通过五磷酸五磷酸途径生产NADPH的葡萄糖,以便可以减少胱氨酸以降低用于谷胱甘肽生物合成(图1)。
化疗耐药对结直肠癌的临床治疗提出了挑战,亟待解决。异柠檬酸脱氢酶1(IDH1)是参与葡萄糖代谢的关键酶,介导肿瘤的恶性转化。但IDH1参与结直肠癌细胞增殖和诱导耐药的机制尚不清楚。本研究发现IDH1在人结直肠癌组织中高表达,可以用来指示高级别肿瘤。通过体外基因过表达和敲低研究IDH1是否促进结直肠癌细胞系HCT8的增殖和对5氟尿嘧啶(5FU)的耐药性。进一步研究表明,5FU耐药细胞系HCT8FU分泌含有高水平IDH1蛋白的外泌体,来自5FU耐药细胞的外泌体IDH1增强了5FU敏感细胞的耐药性。代谢分析显示,来自5FU耐药细胞的外泌体促进IDH1介导的NADPH水平下降,这与结直肠癌细胞5FU耐药性的产生有关。因此,外泌体IDH1可能是结直肠癌化疗耐药性的传递者和驱动者,也是潜在的化疗靶点。
MYC 是多种肿瘤类型中的关键致癌驱动因素,但同时也使癌细胞具有一系列脆弱性,为有针对性的药物干预提供了机会。例如,抑制线粒体呼吸的药物会选择性地杀死 MYC 过表达的细胞。在这里,我们揭示了这种合成致死相互作用的机制基础,并利用它来提高呼吸复合物 I 抑制剂 IACS- 010759 的抗癌作用。在 B 淋巴细胞系中,异位 MYC 活性和 IACS- 010759 治疗加在一起会诱导氧化应激,从而导致还原谷胱甘肽的消耗和氧化还原稳态的致命破坏。这种效果可以通过抑制通过戊糖磷酸途径产生的 NADPH 或抗坏血酸(维生素 C)来增强,已知抗坏血酸在高剂量时可充当促氧化剂。在这些情况下,抗坏血酸与 IACS- 010759 协同作用,在体外杀死 MYC 过度表达细胞,并增强其对人类 B 细胞淋巴瘤异种移植的治疗作用。因此,复合物 I 抑制剂和高剂量抗坏血酸可能会改善高级别淋巴瘤和其他可能由 MYC 驱动的癌症患者的预后。