摘要:基因异常在神经退行性疾病 (NDD) 的发展中起着至关重要的作用。基因探索确实有助于揭示导致各种 NDD 病因和进展的分子复杂性。NDD 中罕见和常见变异的复杂性导致人们对与之相关的遗传风险因素的了解有限。下一代测序技术的进步使全基因组测序和全外显子组测序成为可能,从而可以识别具有重大影响的罕见变异,并提高对孟德尔和复杂神经系统疾病的理解。基因治疗的复兴有望针对疾病的病因并确保持续的纠正。这种方法对于神经退行性疾病尤其有吸引力,因为传统的药理学方法已经无法满足需求。在探索三种最常见的 NDD(肌萎缩侧索硬化症、阿尔茨海默病和帕金森病)的遗传流行病学的背景下,我们的主要目标是强调下一代测序技术的发展。这一进展旨在增强我们对疾病机制的理解,并探索 NDD 的基因疗法。在整个审查过程中,我们重点关注遗传变异、识别方法、相关病理生理学以及基因治疗的潜力。最终,我们的目标是为 NDD 这一新兴研究领域提供全面而前瞻性的视角。
神经发育障碍 (NDD) 包括广泛的病理状况,影响全球 4% 以上的儿童,具有共同的特征并呈现出多样化的遗传来源。它们包括临床定义的疾病,例如自闭症谱系障碍 (ASD)、注意力缺陷多动障碍 (ADHD)、运动障碍例如抽动症和图雷特综合症,但也包括更加异质性的疾病,例如智力障碍 (ID) 和癫痫。精神分裂症 (SCZ) 最近也被提出属于 NDD。NDD 的相对常见原因是拷贝数变异 (CNV),其特征是染色体一部分的增加或丢失。在这篇综述中,我们重点关注 16p11.2 染色体区域的缺失和重复,这些缺失和重复与 NDD、ID、ASD 以及癫痫和 SCZ 有关。人类携带者呈现的一些核心表型可以在动物和细胞模型中重现,这也突出了 16p11.2 CNV 相关表型所依赖的显著神经生理和信号传导改变。在这篇综述中,我们还概述了 16p11.2 基因座内的基因,包括部分已知或未知功能的基因以及非编码 RNA。在调节与 16p11.2 缺失相关的一些病理表型方面,MVP 和 MAPK3 之间观察到了一种特别有趣的相互作用。阐明它们在细胞内信号传导中的作用及其功能联系将是设计 16p11.2 CNV 相关综合征新治疗策略的关键步骤。
神经退行性疾病(NDDS)和其他与年龄有关的疾病已通过一组关键的病理标志在经典上定义。这些标志中的两个,细胞周期失调(CCD)和核质转运(NCT)缺陷,长期以来一直在争论为因果关系,在加速衰老的病理学中是因果关系。具体而言,已证明有丝分裂后神经元中异常细胞周期活化会触发神经元细胞死亡途径和细胞衰老。此外,已经观察到NCT在衰老和神经变性过程中逐渐失调,其中增加了核蛋白的亚细胞再分配(例如TAR DNA-结合蛋白43(TDP43))对细胞质的主要驱动力是许多NDDS的主要驱动力。然而,NCT缺陷的功能意义是作为病理学的主要驱动因素或后果,以及细胞周期机械的重新分布如何促进神经变性,尚不清楚。在这里,我们描述了对进口素β进口的药理抑制能够在丝分裂神经元细胞系和有丝分裂后原发性神经元体外扰动细胞周期机制。以核进口缺陷为特征的运动神经元疾病的NEMF R86S小鼠模型,进一步概括了有丝分裂细胞系中CCD的标志,在体外和有丝分裂后的原发性神经元中以及体内脊柱运动神经元中。观察到的CCD与NDDS中神经元细胞死亡和细胞衰老中观察到的转录和表型失调一致。在一起,这些证据表明,导致CCD的核进口途径受损可能是神经变性中病理学的常见驱动力。
摘要神经退行性疾病(NDDS),例如阿尔茨海默氏病(AD)和帕金森氏病(PD),是一种以促进性变性为特征的异质性疾病。ndds威胁着全球数百万人的生命,遗憾的是无法治愈。线粒体的功能障碍是NDD的发病机理的基础。线粒体的功能障碍会导致能量耗竭,氧化应激,钙过载,胱天蛋白酶激活,这主要主导了NDD的神经元死亡。因此,线粒体是干预NDD的首选目标。到目前为止,已经开发出了各种靶向线粒体的药物,并且令人愉悦 - 其中一些表现出了令人鼓舞的结果,尽管仍然存在一些障碍,例如焦油特定的特定能力,可以阻碍药物开发。在当前的综述中,我们将精心解决1)设计靶向药物的线粒体的策略,2)各个线粒体靶向药物的救援机制,3)如何评估治疗效应。希望这篇评论将提供全面的知识,以了解如何开发更有效的NDD治疗药物。
植入物是无菌固体,其中含有药物,由挤出,成型或收缩等不同方式制备。传统的医学途径对医学释放的控制有限,并且在更长的时间内保持恒定的管补救药物的关注。为了避免与传统片剂形式相关的这些问题,至关重要的是开发新的烤烤形式,这些形式将以受控的速度用于原始劳累的速率。这导致了新型药物输送系统(NDD)的增强,该药物提供了对药物的补救包裹的优化,并使它们在传统的管理方式上更安全,富有成效和可靠。可植入药物输送系统IDD构成了新药物输送系统的一部分。这种管理细节的途径允许有针对性的分布,位置特殊性,恒定释放速率,低量子药物条件以及最小化具有较好效率的不良产品。它提供了每天一次服用药物到每月一次的可能性,而初步的昼夜剂量。目前正在使用不同的可植入技术,用于与牙科,眼科,避孕和肿瘤学类似的补救操作。补救药物的输送样式几乎不可能(如果有的话)控制药物的时间和模式在作用点释放药物注意力。在管中不确定的药物关注是传统治疗系统的典型且令人难忘的问题。一种可植入药物输送的系统是一种新的药物输送方法。因此,为了克服类似的问题,实验者和药物科学家已经使医学输送系统的改善已经使汗水变得汗水,这导致了新型药物输送系统(NDDS)的发展。ndds是低关注药物并以受控方式遵循零顺序释放药物的方法和技术。此外,NDDS的开发导致创建可植入药物输送系统(IDDS)。以这种方式,该药物在受控条件下输送到放置植入物的精确位置。本研究的主题是植入医学递送系统的表达,药物,评估标准和未出生的方面。
摘要:疾病改良治疗(DMT)的临床衰竭率(DMT)的临床衰竭速率缓慢或停止疾病进展的主要神经退行性疾病(NDDS)几乎为100%,其中许多化合物在昂贵且耗时的2阶段和3次试验中缺乏效率。在这里,我们批判性地回顾了NDDS中DMTS的早期临床试验中对药理和机械生物标志物的使用,并提出了一个路线图,以提供早期概念概念,以提高这一高未满足医疗需求的领域的R&D生产率。对已发表的早期临床试验进行了文献搜索,该试验旨在使用PubMed中的网格术语评估NDD DMT化合物。出版物被选择报告了2010年至2020年11月之间的NDD DMT化合物的早期临床试验。对据报道使用药效(机理和生理反应)生物标志物的注意力。总共确定了121个早期临床试验,其中89次试验(74%)纳入了一个或多个药效生物标志物。但是,只有65次试验(54%)使用机械(目标占用或激活)生物标志物来证明人类目标的目标参与。讨论了早期机理和反应生物标志物的最重要类别,并提出了为早期NDD DMT临床试验纳入强大生物标志物策略的路线图。随着我们对NDD的理解正在改善,将潜在的疾病改良治疗带到诊所中有所增加。在早期试验中,在这些(有针对性的)疗法的早期试验中进一步增加了机械生物标志物的合理使用,可以通过在迄今已接近100%的失败率的区域中快速的赢/快速失败方法来提高研发生产率。
肺癌是全球癌症死亡率最高的疾病之一,其中最常见的是非小细胞肺癌。非小细胞肺癌的演化机制涉及多种复杂的信号通路改变。尽管在生物学理解、早期诊断、治疗和耐药机制方面取得了进展,但非小细胞肺癌的治疗仍面临许多难题。然而,人们已经做出许多努力,基于特定的分子信号探索肿瘤细胞的病理变化,以进行药物治疗和靶向递送。纳米递送在肿瘤的诊断和治疗中具有巨大的潜力。近年来,许多研究集中于将药物和纳米颗粒(NPs)的不同组合构成纳米药物递送系统(NDDS),递送调节肿瘤细胞中特定分子信号通路的药物,其中大多数具有积极意义。本综述总结了非小细胞肺癌信号通路中发现的治疗靶点以及相关的纳米药物递送系统的最新进展,并提出了未来的前景和挑战。
摘要:从几十年的广泛研究,与神经炎症有关的关键遗传元素和生化机制中出现了,已被描述,这极大地有助于我们对神经退行性疾病(NDDS)的理解。在这个MinireView中,我们主要从过去三年开始讨论数据,强调了与神经炎症有关的两种主要细胞类型的关键作用和机制。审查还强调了早期发作,神经炎症的关键影响及其在NDDS发病机理中的动态相互作用的扩展过程。面对这些复杂的挑战,我们引入了支持使用间充质干细胞的无细胞治疗的引人注目的证据。这种治疗策略包括对小胶质细胞和星形胶质细胞的调节,周围神经细胞炎症的调节以及针对专门为NDD设计的靶向抗炎干预措施,同时还讨论了工程和安全考虑。这种创新的治疗方法精巧地调节了周围和神经系统的免疫系统,重点是实现出色的穿透力和靶向递送。这篇评论提供的见解对更好地理解和管理神经炎症具有重大影响。关键词:神经退行性疾病,神经炎症,间充质干细胞,外泌体神经退行性疾病(NDDS)在全球范围内变得越来越普遍。在大脑衰老的各种标志中,神经炎症引起了极大的关注[1]。这些疾病代表了主要与年龄相关并逐渐损害神经元功能的异质性神经系统疾病。虽然这些疾病可以在中枢神经系统(CNS)或周围神经系统(PNS)中表现出来,但新兴研究表明,PNS的病理学可能在CNS参与之前几年之前,可能最终导致老年人的神经退行性疾病。
摘要:神经退行性疾病(NDDS)是无法治愈的,令人衰弱的疾病,导致中枢神经系统(CNS)中神经细胞的进行性变性和/或死亡。对CNS疾病的可行治疗靶标和新治疗方法的认同,尤其是NDD是药物发现领域的主要挑战。 这些困难可以归因于所涉及的细胞的多样性,神经回路的极端复杂性,组织再生的能力有限以及我们对基本病理过程的不完全理解。 药物发现是一个复杂而多学科的过程。 当前药物发现方案中的筛查速率意味着只有一种可行的药物可能是由于数百万筛查的化合物而产生的,因此需要改善发现技术和方案以解决多种损耗原因。 这已经确定需要筛选较大的库,其中使用有效的高通量筛选(HTS)成为发现过程中的关键。 HT可以每天研究成千上万种化合物的含量。 但是,如果可以筛选较少的化合物并损害成功的可能性,则成本和时间将大大降低。 为此,计算机辅助设计,计算机库中的最新进展以及分子对接软件结合了基于细胞平台的升级,已进化,以提高筛选效率,并具有更高的可预测性和临床适用性。对CNS疾病的可行治疗靶标和新治疗方法的认同,尤其是NDD是药物发现领域的主要挑战。这些困难可以归因于所涉及的细胞的多样性,神经回路的极端复杂性,组织再生的能力有限以及我们对基本病理过程的不完全理解。药物发现是一个复杂而多学科的过程。当前药物发现方案中的筛查速率意味着只有一种可行的药物可能是由于数百万筛查的化合物而产生的,因此需要改善发现技术和方案以解决多种损耗原因。这已经确定需要筛选较大的库,其中使用有效的高通量筛选(HTS)成为发现过程中的关键。HT可以每天研究成千上万种化合物的含量。但是,如果可以筛选较少的化合物并损害成功的可能性,则成本和时间将大大降低。为此,计算机辅助设计,计算机库中的最新进展以及分子对接软件结合了基于细胞平台的升级,已进化,以提高筛选效率,并具有更高的可预测性和临床适用性。我们在这里审查了HT在当代药物发现过程中,尤其是NDD的越来越多的作用,并评估其成功应用的标准。我们还讨论了HTS对新型NDD疗法的需求,并研究了验证新药物靶标和开发NDD的新疗法的当前主要挑战。
神经发育障碍(NDDS)是一组复杂的神经系统疾病和精神疾病。功能性和分子成像技术,例如静息状态功能磁共振成像(RS-FMRI)和正电子发射tomog-raphy(PET),可用于在人类和人类模型中成熟期间在成熟期间非侵入性和纵向测量网络活性。Here, we review the current knowledge on rs-fMRI and PET biomarkers in the study of normal and abnormal neurodevelopment, including intellectual disability (ID; with/without epilepsy), autism spectrum disorder (ASD), and attention deficit hyperactivity disorder (ADHD), in humans and rodent models from birth until adulthood, and evaluate the cross-species translational value of the imaging biomarkers.迄今为止,只有少数孤立的研究使用RS-FMRI或PET在婴儿期(神经发育的关键时期)中研究啮齿动物的神经发育(异常)。Further work to explore the feasibility of performing functional imaging studies in infant rodent models is essential, as rs-fMRI and PET imag- ing in transgenic rodent models of NDDs are powerful techniques for studying disease pathogenesis, developing noninvasive pre- clinical imaging biomarkers of neurodevelopmental dysfunction, and evaluating treatment-response in disease-specific models.