一种灵敏、低成本、响应速度快的室温气体传感器。1 目前,最常用的便携式气体传感器基于半导体金属氧化物。2,3 这种传感器技术的主要缺点之一是其工作温度通常高于 200°C,这会导致高功耗。4,5 在过去的几十年中,导电聚合物、6,7 2D 层状过渡金属二硫属化物、8 金属纳米粒子、9 石墨烯 10 和碳纳米管 11 等新型材料已被用来改善气体传感器的关键参数,如响应度、选择性、稳定性、检测限和响应/恢复时间。由于其卓越的电子和机械性能,加上对周围环境的极端敏感性,单壁碳纳米管 (SWCNT) 代表了开发新型传感器的一种非常有前途的替代方案。 12 – 19 通常,这些气体传感器采用 SWCNT-FET 设备的形式,并基于气体暴露触发的 SWCNT 电响应修改。15,17,20 – 26
钙钛矿量子点 (QD) 可以通过精确控制其成分和尺寸来化学合成,覆盖整个可见光谱范围,近年来已成为一类具有高量子产率的新型发射体。此外,它们的尺寸相关量子限制可以解释某些多晶钙钛矿薄膜令人惊讶的高发射效率,由于其晶粒结构,这些薄膜可能表现为效率相当低的发射体。5,6 为了加速其发射速率并进一步提高其量子产率(这在处理单光子量子发射体时至关重要),已经实施了不同的方案。7,8 目标是利用谐振器内的场强度增强,从而实现更高的 Purcell 因子。事实上,对钙钛矿进行图案化并将其沉积在其他材料上的能力使得它们可以与各种谐振器相结合:分布式反馈布拉格反射器、9 – 12
电导率和柔性超级电容器中电极活性材料的低电阻不能被夸大。在超级电容器的领域中,电极材料具有至关重要的意义,持续的效果致力于开发新型材料,例如石墨烯,MXENE,金属有机框架(MOF)等,旨在增强设备性能。MOF材料是新型材料,由金属簇和配体组成。先前的研究表明,超级电容器可以直接利用该材料作为电极材料。4 - 6中,电极和电解质之间的接触可以通过材料中的多孔结构来促进,从而产生双电动层效应,金属离子可以与electrolete进行某些氧化还原反应,从而导致假性含量。7,8在先前的作品中,Ni-Mof,9,10 Co-Mof,11,12 Fe-Mof,13和Ni/Comof(14,15)在其他工作中显示出很大的潜力作为超级电容器电极材料。中,由于其较高的电化学活性,双重动物的Ni/ComoF具有比单个MOF更高的电容和更有希望的性能。我们还准备了CO/NI-MOF粉末材料,并研究了CO和Ni的摩尔比以对电化学性能的影响。16准备好的圆锥体0.5 -mof
需要控制以定义设备性能的大小参数。第五组元素二晶曲是一种特殊的材料,在III - V材料生长8中既充当表面活性剂,又是许多量子材料中的组成部分。9从第一个原则计算中,众所周知,如果将BI纳入具有诱导非平地拓扑特性的其他III - V化合物频段Invers Invers Invers 10中,则基于III III-BI Alloys的组合。inas作为III - V半导体系统之一,以优于标准的基于SI的技术。这种化合物对于红外探测器,14个低功率电子15和量子计算具有很大的潜力。1 INA通常在锌混合物(ZB)结构中结晶,但也可以在低维结构中生长在Wurtzite(WZ)相。这为基于带隙异质结构16,17的探索和创建新型设备打开了大门,以及较低的临时和大气条件的敏感性。试图将BI纳入INAS晶格时,出现了18个困难。由INBI区域和INAS 10区域之间的较大的混乱差距是由各自的四方和立方晶格结构产生的,在散装材料的生长过程中会产生BI ADATOM的相位分离和群集。19
提高 ITC 的传统策略是 (i) 用热界面材料填充两个接触表面之间的间隙,23 (ii) 提高界面的耦合强度,或 (iii) 增加共价键的密度。24 据报道,使用键合有机纳米分子单层可以使铜和二氧化硅之间的 ITC 增加四倍,这可以提供与金属和电介质材料的强键合相互作用。25 据报道,在金和无定形聚乙烯系统中,通过分子桥也可以类似地增加 ITC。26 然而,即使对于通过强共价键连接的两个理想的光滑界面,由于两种不同材料之间的晶格常数和固有声子性质差异很大,界面热阻仍然存在。27,28 人们已经付出了很多努力来提高具有强共价键的界面的 ITC。例如,Tian 等人。发现原子混合引起的界面粗糙度可以提高声子传输系数和 ITC。29 此外,虽然点缺陷降低了纳米材料的热导率,但它
物联网的发展要求在几乎每个物体上都连接电子电路,其中一些电路必须非常便宜并且只用很小的电池供电,或者甚至不需要电池,而是使用传感器动态产生的能量。1,2 生成的电子数据需要在传输前加密以避免间谍活动,这需要使用真随机数生成器 (TRNG) 电路。3 最先进的 TRNG 电路采用熵源来生成不可预测的二进制数串,最常见的是电阻的热噪声、环形振荡器的抖动和触发器的亚稳态。4 – 7 虽然这些解决方案提供了高随机性和吞吐量(>1 兆比特/秒),但许多研究仅报告了模拟级别,8,9 并且在某些情况下它们的功耗太大(>0.01 mW),阻碍了它们在许多户外小物体中的应用。 3
在介电层和Si子层中取出Cu的分化。2作为设备尺寸缩小并出现了更复杂的结构,可用于晶体管水平的铜互连的体积相应地变小,并且必须容纳屏障,衬里和铜。从更一般的角度来看,众所周知,在纳米级,CU将优先汇总为高分辨率3D岛结构。3,4解决这些问题的一种解决方案是用不从这些问题替代的替代金属代替铜。在这方面,早期过渡金属钴(CO)是替代下一代互连中Cu的替代材料的备受关注。CO与半导体设备的缩小尺寸已用于沟渠和VIA。5 - 7
a 福州大学化工学院,福州 350116,中国。电子邮件:jyhuang@fzu.edu.cn,yklai@fzu.edu.cn b 苏州大学纺织与服装工程学院,现代丝绸国家工程实验室,苏州 215123,中国 c 加利福尼亚大学洛杉矶分校化学与生物分子工程系,加利福尼亚州 90095,美国 d 香港城市大学生物医学系,香港 999077,中国 e 南洋理工大学材料科学与工程学院,新加坡 639798 南洋大道 50 号
传统的冯·诺伊曼(Von Neumann)体系结构,自成立以来一直是计算的基础,将处理和内存单元隔离,因此导致众所周知的瓶颈通常被称为“ von noumann瓶颈”。1 - 3由处理和内存单元之间的数据持续穿梭产生的瓶颈不仅会产生大量的能耗,而且对计算速度产生了限制。4,5学术界和工业界正在积极寻求替代计算档案,以维持计算能力的进步,因为摩尔法律的终止以及进一步的晶体管微型化的局限性。6 - 8最有希望的替代方法是神经形态计算,它从人的大脑中吸引了启示,并将加工和记忆整合到统一的实体中。9,10大脑充当中央处理单元,众所周知,信息传播仅消耗约10-20W。11因此,科学家通过开发称为神经形态计算的新原理范式来复制了脑启发的计算,旨在模仿人类大脑中的认知功能。据我们所知,人类神经系统由超过860亿个神经元组成。 如图所示 1a,这些神经元形成了通过突触互连的复杂网络,促进了化学介质的传播(例如 ,Ca +,Na +和K +)从突触前到Postsy-aptic终端。 受此启发,Iontronics已成为据我们所知,人类神经系统由超过860亿个神经元组成。如图1a,这些神经元形成了通过突触互连的复杂网络,促进了化学介质的传播(例如,Ca +,Na +和K +)从突触前到Postsy-aptic终端。受此启发,Iontronics已成为