1 瓦伦西亚大学医学院病理学系 - INCLIVA 生物医学健康研究所,西班牙瓦伦西亚 46010; reburpa@alumni.uv.es(RB-P.)、samuel.navarro@uv.es(SN)、Susana.Martin@uv.es(SM-V.)2 低患病率肿瘤,癌症网络生物医学研究中心(CIBERONC),卡洛斯三世健康研究所,28029 马德里,西班牙 3 纳瓦拉大学药学和营养学院制药技术和化学系,31008,潘普洛纳,西班牙; selmoukhtar@alumni.unav.es(SHE),crodriguez.31@alumni.unav.es(CR-N.)4 瓦伦西亚大学实验研究中央支持服务(SCSIE),46100,布尔哈索特,瓦伦西亚,西班牙; Inmaculada.Noguera@uv.es(印度)。 5 纳瓦拉健康研究所(IdiSNA),31008,潘普洛纳,西班牙 6 塞维利亚生物医学研究所(IBiS),Virgen del Rocío 大学医院/CSIC/塞维利亚大学和塞维利亚大学细胞生物学系,塞维利亚 41013,西班牙; pvicente1@us.es (PV-M.) 7 儿科肿瘤科,La Fe 医院,Av. Fernando Abril Martorell 106, 46026,瓦伦西亚,西班牙; canyete_ade@gva.es (AC) * 通信地址:mjblanco@unav.es (MJ.BP.)、Rosa.Noguera@uv.es (RN);电话:34-948425679 和 34-963983948 † 这些作者对这项工作做出了同等贡献。
细胞微环境是围绕细胞的化学物质,蛋白质和其他信号的汤,并且是人体所特有的。例如,骨髓微环境包含生长血细胞和重组骨骼的信号。转移的神经母细胞瘤细胞经常迁移到骨髓,那里的骨形态发生蛋白(BMP)途径信号高度活跃。研究人员表明,BMP信号传导使神经母细胞瘤细胞更容易受到视黄酸的影响。
超氧化物歧化酶(SOD)是一种保护人体免受自由放射线的抗氧化剂。它具有抗氧化剂和免疫调节特性,从而诱导巨噬细胞极性从M1到M2。巨噬细胞(先天免疫反应的关键介体)分为M1(促炎)和M2(抗炎)亚型。在这项研究中,我们旨在评估SOD对神经细胞的抗氧化和神经保护作用及其对巨噬细胞的免疫调节作用。我们观察到SOD抑制了活性氧的认可,并增强了H 2 O 2处理的神经细胞的生存力。此外,SOD降低了用巨噬细胞的条件培养基处理的神经细胞中的坏死程度,巨噬细胞诱导炎症。另外,SOD促进了M1至巨噬细胞的M2转变。我们的发现表明SOD保护神经细胞并调节免疫反应。
这是根据Creative Commons Attribution-非商业许可条款的开放式访问文章,允许在任何媒介中使用,分发和复制,前提是适当地引用了原始工作,并且不用于商业目的。信件:宾夕法尼亚大学费城儿童医院和佩雷尔曼医学院儿童医院Kristina A. Cole,4026 Colket Translation Research Buildity,PA PA 19104,美国colek@chop.edu。作者贡献Kristina Cole:概念化,项目管理,写作原始草稿以及写作和编辑。Heba Ijaz:调查和可视化。Lea Surrey:验证。Mariarita Santi:资源和验证。xiaowei liu:数据策划。查尔斯·米纳德(Charles Minard):方法,正式分析以及写作和编辑。John M. Maris:概念化和写作 - 评论和编辑。 Stephan Voss:验证和可视化。 乔尔·里德(Joel Reid):正式分析。 伊丽莎白·福克斯(Elizabeth Fox):概念化,监督和写作评论和编辑。 Brenda Weigel:监督,资金获取以及写作审查和编辑。John M. Maris:概念化和写作 - 评论和编辑。Stephan Voss:验证和可视化。乔尔·里德(Joel Reid):正式分析。伊丽莎白·福克斯(Elizabeth Fox):概念化,监督和写作评论和编辑。Brenda Weigel:监督,资金获取以及写作审查和编辑。
未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(此版本发布于2023年4月30日。; https://doi.org/10.1101/2023.04.27.27.538309 doi:biorxiv Preprint
异常的替代前MRNA剪接在MYC驱动的癌症中起关键作用,因此可能代表了治疗性脆弱性。在这里,我们表明神经母细胞瘤是一种以剪接失调和剪接依赖性为特征的MYC驱动的癌症,需要剪接因子RBM39才能存活。indisulam是一种“分子胶”,其选择性地将RBM39募集到CRL4-DCAF15 E3 E3泛素连接酶以用于蛋白酶体降解,对神经母细胞瘤具有高效的有效性,导致在多种高风险疾病模型中导致无效的无毒性毒性,导致显着反应。遗传耗竭或Indisulam介导的RBM39降解可引起明显的全基因组剪接异常和细胞死亡。从机械上讲,DCAF15对RBM39和高级表达的依赖性决定了神经母细胞瘤对indisulam的精致灵敏度。我们的数据表明,通过精确抑制神经母细胞瘤的脆弱性RBM39来靶向失调的剪接体是一种有效的治疗策略。
背景:人们对儿科实体瘤的分子评估有浓厚兴趣。尽管针对神经母细胞瘤 (NB) 的靶向治疗临床试验正在进行中,但对于对治疗有抗药性的高危病例,需要新的治疗策略。本研究的目的是利用下一代测序 (NGS) 记录复发或难治性 NB 患者中与靶向治疗相关的特定基因突变。方法:研究包括土耳其 1965 例神经母细胞瘤病例中的 57 名 NB 患者,他们在多模式治疗后复发。根据国际神经母细胞瘤风险组的分类系统对病例进行诊断、风险分层和治疗。使用 Illumina Miniseq 平台上的 Pillar Onco/Reveal Multicancer v4 面板和 Pillar RNA 融合面板研究了 60 个基因的单核苷酸变异。结果:ERBB2 I655V 是最常见的突变,在 39.65% 的病例中发现。 29.3% 的病例检测到间变性淋巴瘤激酶 (ALK) 突变 (F1174L、R1275Q 和酪氨酸激酶结构域中的罕见突变)。19.6% 的病例观察到 NTRK1、NTRK3、ROS1、RET、FGFR3、ALK 和 BRAF 中的融合突变。结论:本研究为复发和难治性 NB 患者提供了有价值的突变数据。ERBB2 I655V 突变的高频率可能允许进一步探索该突变作为潜在的治疗靶点。罕见的 BRAF 突变也可能为靶向治疗提供机会。还应进一步探索 ABL1 突变在 NB 中的作用。
摘要:人神经母细胞瘤细胞系SH-SY5Y和IMR-32可以通过用全反替酸(ATRA)处理分化为神经元样的表型。分化后,这些细胞系被广泛用作体外模型来研究神经元细胞生物学的各个方面。然而,在ATRA诱导的分化中,SH-SY5Y和IMR-32细胞的蛋白质组和磷酸蛋白质组的时间和定量分析受到限制。在这里,我们在ATRA诱导的分化过程中,在多个时间点对SH-SY5Y和IMR-32细胞的蛋白质组和磷酸蛋白质组进行了相对定量。与随后的基因本体分析的蛋白质和磷酸肽的相对定量表明,包括细胞骨架组织,细胞分裂,伴侣伴侣功能和蛋白质折叠以及单碳代谢在内的几种生物学过程与两种细胞系中ATRA诱导的分化都相关。此外,激酶 - 基底富集分析预测了分化过程中几种激酶的活性改变。其中,CDK5表现出增加的活性,而CDK2的活性降低。提供的数据是研究在ATRA诱导的分化过程中SH-SY5Y和IMR-32细胞中时间蛋白和磷蛋白丰度变化的宝贵资源。
摘要 背景 接受抗 GD2 单克隆抗体治疗的神经母细胞瘤 (NB) 和微小残留疾病的儿童中观察到生存获益,这促使我们研究抗 CD3×抗 GD2 双特异性抗体 (GD2Bi) 武装 T 细胞 (GD2BAT) 的安全性和潜在临床益处。临床前研究表明 GD2BAT 对 GD2+ 细胞系具有高细胞毒性,从而启动了复发/难治性患者的 I/II 期研究。 方法 3+3 剂量递增 I 期研究 (NCT02173093) 涵盖了 9 名可评估的患者,他们患有 NB (n=5)、骨肉瘤 (n=3) 和促纤维增生性小圆细胞肿瘤 (n=1)。患者每周接受两次 GD2BAT 输注,剂量分别为 40、80 或 160×10 6 GD2BAT/kg/ 输注,同时辅以每日白细胞介素 2(300,000 IU/ m 2 )和每周两次粒细胞巨噬细胞集落刺激因子(250 µg/m 2 )。II 期研究重点关注 NB 患者,剂量 3 水平为 160×10 6 GD2BAT/kg/输注。结果 在入组的 12 名患者中,有 9 名完成了 I 期治疗,没有剂量限制性毒性。所有患者均出现了轻度且可控制的细胞因子释放综合征,表现为 2-3 级发烧/发冷、头痛和偶尔出现的低血压,最长可持续到 GD2BAT 输注后 72 小时内。GD2 抗体相关疼痛轻微。 I 期和有限 II 期的中位总生存期 (OS) 分别为 18.0 个月和 31.2 个月,合并 OS 为 21.1 个月。I 期 NB 患者具有完全骨髓反应,总体病情稳定。在 II 期,12 名患者中有 10 名可评估:1 名获得部分反应,3 名显示临床益处,病情稳定时间延长。超过 50% 的可评估患者在 GD2BAT 后对 GD2+ 靶标表现出增强的免疫反应,如干扰素-γ (IFN- γ ) EliSpots、Th1 细胞因子和/或趋化因子所示。结论本研究证明了高达 160×10 6 细胞/kg/输注的 GD2BAT 的安全性。加上治疗后内源性免疫反应的证据,我们的研究结果支持在更大规模的 II 期临床试验中进一步研究 GD2BAT。
简单摘要:尽管有治疗,但很大一部分神经母细胞瘤复发和死亡的患者需要新的个性化策略和治疗靶标。缺氧是几种实体瘤中氧合作用降低的病情,对神经母细胞瘤(NB)肿瘤生物学和患者预后具有深远的影响。建立缺氧与药物化合物之间的新联系可能为NB患者提供新颖的治疗策略。在本研究中,我们成功地识别了19种化合物,主要属于PI3K/AKT/MTOR抑制剂,其抗催眠毒素效应在使用连接性映射软件的九种不同细胞系的基因表达中显示出其抗催眠作用。我们独立确认了在缺氧条件下培养的NB细胞上的这些发现,并用MTORC抑制剂PP242处理。PI3K/AKT/MTOR抑制剂代表了靶向神经母细胞瘤缺氧的潜在有效化合物。pi3k/akt/mTOR抑制剂因此,在涉及神经母细胞瘤患者缺氧肿瘤患者的随机临床试验中,将来将来适用于新的辅助治疗。